Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (5): 104208   https://doi.org/10.1007/s11467-015-0499-4
  本期目录
Conditions for ponderomotive resonances in the Kapitza–Dirac effect
Chao Yu1,Jingtao Zhang2,Zhenrong Sun1(),Ju Gao3,Dong-Sheng Guo4,1,*()
1. State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China
2. Department of Physics, Shanghai Normal University, Shanghai 200234, China
3. Suzhou Jingpin Advanced Materials Co. Ltd., Jiangsu FOHO Science Park, Fenhu Town, Suzhou 215211, China
4. School of Physics, Peking University, Beijing 100871, China
 全文: PDF(195 KB)  
Abstract

By applying a nonperturbative quantum electrodynamic theory, we study ponderomotive resonances when an electron beam is scattered by a standing photon wave. Our study shows that the ponderomotive parameter up, the ponderomotive energy per laser-photon energy, for each of the two traveling laser modes possesses a minimum value ω/(mec2). Ponderomotive resonances occur only when the ratio of the laser photon energy to the electron rest-mass energy is a fraction, where the denominator is twice the square of a positive integer and the numerator is the total ponderomotive number, which is also a positive integer.

Key wordsKapitza–Dirac effect    strong laser physics    nonperturbative quantum electrodynamics
收稿日期: 2015-06-08      出版日期: 2015-10-26
Corresponding Author(s): Dong-Sheng Guo   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(5): 104208.
Chao Yu,Jingtao Zhang,Zhenrong Sun,Ju Gao,Dong-Sheng Guo. Conditions for ponderomotive resonances in the Kapitza–Dirac effect. Front. Phys. , 2015, 10(5): 104208.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0499-4
https://academic.hep.com.cn/fop/CN/Y2015/V10/I5/104208
1 P. L. Kapitza and P. A. M. Dirac, The reflection of electrons from standing light waves, Proc. Camb. Philos. Soc. 29(02), 297 (1933)
https://doi.org/10.1017/S0305004100011105
2 L. S. Bartell, R. R. Roskos, and H. Bradford Thompson, Reflection of electrons by standing light waves: Experimental study, Phys. Rev. 166(5), 1494 (1968)
https://doi.org/10.1103/PhysRev.166.1494
3 H. Schwarz, H. A. Tourtellotte, and W. W. Gaertner, Direct observation of nonlinear scattering of electrons by laser beam, Phys. Lett. 19(3), 202 (1965)
https://doi.org/10.1016/0031-9163(65)90066-1
4 Y. Takeda and I. Matsui, Electron reflection by standing wave of giant pulse laser, J. Phys. Soc. Jpn. 25(4), 1202 (1968)
https://doi.org/10.1143/JPSJ.25.1202
5 P. H. Bucksbaum, D. W. Schumacher, and M. Bashkansky, High-intensity Kapitza−Dirac effect, Phys. Rev. Lett. 61(10), 1182 (1988)
https://doi.org/10.1103/PhysRevLett.61.1182
6 D. L. Freimund, K. Aflatooni, and H. Batelaan, Observation of the Kapitza−Dirac effect, Nature 413, 142 (2001)
https://doi.org/10.1038/35093065
7 M. V. Fedorov, The Kapitza−Dirac effect in a strong radiation field, Sov. Phys. JETP 25(5), 952 (1967)
8 M. V. Fedorov, Stimulated scattering of electrons by photons and adiabatic switching on hypothesis, Opt. Commun. 12(2), 205 (1974)
https://doi.org/10.1016/0030-4018(74)90392-7
9 R. Gush and H. P. Gush, Electron scattering from a standing light wave, Phys. Rev. D 3(8), 1712 (1971)
https://doi.org/10.1103/PhysRevD.3.1712
10 E. A. Coutsias and J. K. McIver, Nonrelativistic Kapitza−Dirac scattering, Phys. Rev. A 31(5), 3155 (1985)
https://doi.org/10.1103/PhysRevA.31.3155
11 R. Z. Olshan, A. Gover, S. Ruschin, and H. Kleinman, Observation of electron trapping and phase-area displacement in the interaction between an electron beam and two counter-propagating laser beams, Phys. Rev. Lett. 58(5), 483 (1987)
https://doi.org/10.1103/PhysRevLett.58.483
12 L. Rosenberg, Effect of virtual Compton scattering on electron propagation in a laser field, Phys. Rev. A 49(2), 1122 (1994)
https://doi.org/10.1103/PhysRevA.49.1122
13 M. A. Efremov and M. V. Fedorov, Wavepacket theory of the Kapitza−Dirac effect, J. Phys. B 33(20), 4535 (2000)
https://doi.org/10.1088/0953-4075/33/20/325
14 D. S. Guo and G. W. F. Drake, Multiphoton ionization in circularly polarized standing waves, Phys. Rev. A 45(9), 6622 (1992)
https://doi.org/10.1103/PhysRevA.45.6622
15 D. S. Guo, T. Åberg, and B. Crasemann, Scattering theory of multiphoton ionization in strong fields, Phys. Rev. A 40(9), 4997 (1989)
https://doi.org/10.1103/PhysRevA.40.4997
16 L. V. Keldysh, Diagram technique for nonequilibrium processes, Sov. Phys. JETP 20(4), 1307 (1965)
17 D. M. Wolkow, Über eine Klasse von Lösungen der Diracschen Gleichung, Z. Phys. 94(3−4), 250 (1935)
https://doi.org/10.1007/BF01331022
18 D. S. Guo, Exact wave functions for atomic electron interacting with photon fields, Front. Phys. 8(1), 39 (2013)
https://doi.org/10.1007/s11467-013-0283-2
19 D. S. Guo, J. T. Zhang, Z. R. Sun, J. T. Wang, J. Gao, Z.-W. Sun, and R. R. Freeman, Even-odd harmonics generated from above-threshold ionization, Front. Phys. 9(1), 69 (2014)
https://doi.org/10.1007/s11467-013-0378-9
20 D. S. Guo, C. Yu, J. Zhang, J. Gao, Z. W. Sun, and Z. Sun, On the cutoff law of laser induced high harmonic spectra, Front. Phys. 10(2), 215 (2015)
https://doi.org/10.1007/s11467-014-0447-8
21 C. Yu, J. T. Zhang, Z.-W. Sun, Z. R. Sun, and D.-S. Guo, A nonperturbative quantum electgrodynamic approach to the laser induced high harmonic generation, Front. Phys. 10, 103202 (2015)
https://doi.org/10.1007/s11467-014-0429-x
22 J. Gao, D. S. Guo, and Y. S. Wu, Resonant abovethreshold ionization at quantized laser intensities, Phys. Rev. A 61(4), 043406 (2000)
https://doi.org/10.1103/PhysRevA.61.043406
23 D. S. Guo, Theory of the Kapitza−Dirac effect in strong radiation fields, Phys. Rev. A 53(6), 4311 (1996)
https://doi.org/10.1103/PhysRevA.53.4311
24 B. Lippmann and J. Schwinger, Variational principles for scattering processes (I), Phys. Rev. 79(3), 469 (1950)
https://doi.org/10.1103/PhysRev.79.469
25 M. Gell-Mann and M. L. Goldberger, The formal theory of scattering, Phys. Rev. 91(2), 398 (1953)
https://doi.org/10.1103/PhysRev.91.398
26 X. Hu, H. Wang, and D. S. Guo, Phased Bessel functions, Can. J. Phys. 86, 863 (2008)
27 D. S. Guo and G. W. F. Drake, Stationary solutions for an electron in an intense laser field (II): Multimode case, J. Phys. A 25(20), 5377 (1992)
https://doi.org/10.1088/0305-4470/25/20/018
28 D. L. Freimund and H. Batelaan, Bragg scattering of free electrons using the Kapitza−Dirac effect, Phys. Rev. Lett. 89(28), 283602 (2002)
https://doi.org/10.1103/PhysRevLett.89.283602
29 X. F. Li, J. T. Zhang, Z. Z. Xu, P.M. Fu, D. S. Guo, and R. R. Freeman, Theory of the Kapitza−Dirac diffraction effect, Phys. Rev. Lett. 92(23), 233603 (2004)
https://doi.org/10.1103/PhysRevLett.92.233603
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed