Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (5): 104207   https://doi.org/10.1007/s11467-015-0500-2
  本期目录
Effect of parameters on Si plasma emission in collinear double-pulse laser-induced breakdown spectroscopy
Fang-Fang Chen,Xue-Jiao Su,Wei-Dong Zhou()
Key Laboratory of Optical Information Detection and Display Technology of Zhejiang, Zhejiang Normal University, Jinhua 321004, China
 全文: PDF(542 KB)  
Abstract

Collinear dual-pulse laser-induced breakdown spectroscopy was carried out on Si crystal by using a pair of nanosecond Nd:YAG laser sources emitting at 1064 nm. The spectral intensities and signalto-noise ratios of selected Si atomic and ionic lines were used to evaluate the optical emission. The optical emission intensity was recorded while varying the interpulse delay time and energy ratio of the two pulsed lasers. The effects of the data acquisition delay time on the line intensity and signal-to-noise ratio have been investigated as well. Based on the results, the optimal interpulse delay time, energy ratio of the two pulsed lasers, and data acquisition delay time for achieving the maximum atomic and ionic line intensities were found for generation of Si plasma with the collinear dual-pulse laser approach. The dominant mechanism for the observed line intensity variation was also discussed. In addition, the plasma temperature and electron number density at different gate delay times and different interpulse delay times were derived. A significant influence of plasma shielding on the electron temperature and electron number density at shorter interpulse delay times was observed.

Key wordslaser-induced breakdown spectroscopy    collinear dual-pulse    plasma emission intensity
收稿日期: 2015-03-29      出版日期: 2015-10-26
Corresponding Author(s): Wei-Dong Zhou   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(5): 104207.
Fang-Fang Chen,Xue-Jiao Su,Wei-Dong Zhou. Effect of parameters on Si plasma emission in collinear double-pulse laser-induced breakdown spectroscopy. Front. Phys. , 2015, 10(5): 104207.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0500-2
https://academic.hep.com.cn/fop/CN/Y2015/V10/I5/104207
1 J. P. Singh and S. N. Thakkur, Laser-Induced Breakdown Spectroscopy, Elsevier Science, Oxford, 2007
2 Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)
https://doi.org/10.1007/s11467-013-0410-0
3 J. S. Xiu, X. S. Bai, V. Motto-Ros, and J. Yu, Characteristics of indirect laser-induced plasma from a thin film of oil on a metallic substrate, Front. Phys. 10(2), 104204 (2015)
https://doi.org/10.1007/s11467-014-0450-0
4 X. Li, W. Zhou, K. Li, H. Qian, and Z. Ren, Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil, Opt. Commun. 285(1), 54 (2012)
https://doi.org/10.1016/j.optcom.2011.08.074
5 W. Zhou, K. Li, H. Qian, Z. Ren, and Y. Yu, Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy, Appl. Opt. 51(7), B42 (2012)
https://doi.org/10.1364/AO.51.000B42
6 Z. Hou, Z. Wang, J. Liu, W. Ni, and Z. Li, Combination of cylindrical confinement and spark discharge for signal improvement using laser induced breakdown spectroscopy, Opt. Express 22(11), 12909 (2014)
https://doi.org/10.1364/OE.22.012909
7 A. M. Popov, F. Colao, and R. Fantoni, Enhancement of LIBS signal by spatially confining the laser-induced plasma, J. Anal. At. Spectrom. 24(5), 602 (2009)
https://doi.org/10.1039/b818849a
8 Z. Wang, Z. Hou, S. Lui, D. Jiang, J. Liu, and Z. Li, Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal, Opt. Express 20(23), A1011 (2012)
https://doi.org/10.1364/OE.20.0A1011
9 X. Su, W. Zhou, and H. Qian, Optimization of cavity size for spatial confined laser-induced breakdown spectroscopy, Opt. Express 22(23), 28437 (2014)
https://doi.org/10.1364/OE.22.028437
10 C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L’Hermite, and J. Dubessy, Main parameters influencing the doublepulse laser-induced breakdown spectroscopy in the collinear beam geometry, Spectrochim. Acta B 60(6), 792 (2005)
https://doi.org/10.1016/j.sab.2005.05.006
11 D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, Enhancement of Nd: YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse, Opt. Express 15(20), 12905 (2007)
https://doi.org/10.1364/OE.15.012905
12 Y. Yu, W. Zhou, and X. Su, Detection of Cu in solution with double pulse laser-induced breakdown spectroscopy, Opt. Commun. 333, 62 (2014)
https://doi.org/10.1016/j.optcom.2014.07.053
13 R. Sattmann, V. Sturm, and R. Noll, Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses, J. Phys. D 28(10), 2181 (1995)
https://doi.org/10.1088/0022-3727/28/10/030
14 X. Su, W. Zhou, and H. Qian, Optical emission character of collinear dual pulse laser plasma with cylindrical cavity confinement, J. Anal. At. Spectrom. 29(12), 2356 (2014)
https://doi.org/10.1039/C4JA00296B
15 A. Bogaerts, Z. Chen, and D. Autrique, Double pulse laser ablation and laser induced breakdown spectroscopy: A modeling investigation, Spectrochim. Acta B 63(7), 746 (2008)
https://doi.org/10.1016/j.sab.2008.04.005
16 A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale, Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples, Spectrochim. Acta B 63(7), 805 (2008)
https://doi.org/10.1016/j.sab.2008.05.002
17 F. Colao, V. Lazic, R. Fantoni, and S. Pershin, A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples, Spectrochim. Acta B 57(7), 1167 (2002)
https://doi.org/10.1016/S0584-8547(02)00058-7
18 V. N. Rai, A. K. Rai, F. Y. Yueh, and J. P. Singh, Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field, Appl. Opt. 42(12), 2085 (2003)
https://doi.org/10.1364/AO.42.002085
19 P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, Effect of laser pulse energies in laser induced breakdown spectroscopy in doublepulse configuration, Spectrochim. Acta B 60(11), 1392 (2005)
https://doi.org/10.1016/j.sab.2005.08.007
20 B. Rashid, R. Ahmed, R. Ali, and M. A. Baig, A comparative study of single and double pulse of laser induced breakdown spectroscopy of silver, Phys. Plasmas 18(7), 073301 (2011)
https://doi.org/10.1063/1.3599591
21 H. Griem, Principles of Plasma Spectroscopy, Cambridge: Cambridge University Press, 1997
https://doi.org/10.1017/CBO9780511524578
22 X. Li, Z. Wang, X. Mao, and R. E. Russo, Spatially and temporally resolved spectral emission of laser-induced plasmas confined by cylindrical cavities, J. Anal. At. Spectrom. 29(11), 2127 (2014)
https://doi.org/10.1039/C4JA00178H
23 NIST, Atomic Spectra Database, http://physics.nist.gov
24 V. I. Babushok, F. C. Jr DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement, Spectrochim. Acta B 61(9), 999 (2006)
https://doi.org/10.1016/j.sab.2006.09.003
25 W. Zhou, X. Su, H. Qian, K. Li, X. Li, Y. Yu, and Z. Ren, Discharge character and optical emission in a laser ablation nanosecond discharge enhanced silicon plasma, J. Anal. At. Spectrom. 28(5), 702 (2013)
https://doi.org/10.1039/c3ja30355a
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed