Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (5): 106102   https://doi.org/10.1007/s11467-015-0511-z
  本期目录
Unprecedentedly rapid transport of single-file rolling water molecules
Qiu Tong(邱桐)(),Huang Ji-Ping(黄吉平)()
Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, China
 全文: PDF(374 KB)  
Abstract

The realization of rapid and unidirectional single-file water-molecule flow in nanochannels has posed a challenge to date. Here, we report unprecedentedly rapid unidirectional single-file water-molecule flow under a translational terahertz electric field, which is obtained by developing a Debye doublerelaxation theory. In addition, we demonstrate that all the single-file molecules undergo both stable translation and rotation, behaving like high-speed train wheels moving along a railway track. Independent molecular dynamics simulations help to confirm these theoretical results. The mechanism involves the resonant relaxation dynamics of H and O atoms. Further, an experimental demonstration is suggested and discussed. This work has implications for the design of high-efficiency nanochannels or smaller nanomachines in the field of nanotechnology, and the findings also aid in the understanding and control of water flow across biological nanochannels in biology-related research.

Key wordswater molecules    carbon nanotubes    molecular dynamics    terahertz electric field    electrohydrodynamics    Debye double-relaxation theory
收稿日期: 2015-06-01      出版日期: 2015-10-26
Corresponding Author(s): Qiu Tong(邱桐),Huang Ji-Ping(黄吉平)   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(5): 106102.
Qiu Tong(邱桐),Huang Ji-Ping(黄吉平). Unprecedentedly rapid transport of single-file rolling water molecules. Front. Phys. , 2015, 10(5): 106102.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0511-z
https://academic.hep.com.cn/fop/CN/Y2015/V10/I5/106102
1 T. B. Sisan and S. Lichter, Solitons transport water through narrow carbon nanotubes, Phys. Rev. Lett. 112(4), 044501 (2014)
2 C. B. Picallo, S. Gravelle, L. Joly, E. Charlaix, and L. Bocquet, Nanofluidic osmotic diodes: Theory and molecular dynamics simulations, Phys. Rev. Lett. 111(24), 244501 (2013)
3 K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes, Science 306(5700), 1362 (2004)
4 M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas, and A. M. Mayes, Science and technology for water purification in the coming decades, Nature 452(7185), 301 (2008)
5 A. Srivastava, O. N. Srivastava, S. Talapatra, R. Vajtai, and P. M. Ajayan, Carbon nanotube filters, Nat. Mater. 3(9), 610 (2004)
6 Y. B. Chen, Y. H. Liu, Y. Zeng, W. Mao, L. Hu, Z. L. Mao, and H. Q. Xu, Optimal aspect ratio of endocytosed spherocylindrical nanoparticle, Front. Phys. 10(1), 116 (2015)
7 C. Lee, C. Cottin-Bizonne, A. L. Biance, P. Joseph, L. Bocquet, and C. Ybert, Osmotic flow through fully permeable nanochannels, Phys. Rev. Lett. 112(24), 244501 (2014)
8 G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414(6860), 188 (2001)
9 X. J. Gong, J. Y. Li, H. Zhang, R. Z. Wan, H. J. Lu, S. Wang, and H. P. Fang, Enhancement of water permeation across a nanochannel by the structure outside the channel, Phys. Rev. Lett. 101(25), 257801 (2008)
10 X. J. Gong, J. Y. Li, H. J. Lu, R. Z. Wan, J. C. Li, J. Hu, and H. P. Fang, A charge-driven molecular water pump, Nat. Nanotechnol. 2(11), 709 (2007)
11 M. Ma, F. Grey, L. M. Shen, M. Urbakh, S. Wu, J. Z. Liu, Y. L. Liu, and Q. S. Zheng, Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction, Nat. Nanotechnol. 10(8), 692 (2015)
12 Y. L. Zhao, Y. L. Song, W. G. Song, W. Liang, X. Y. Jiang, Z. Y. Tang, H. X. Xu, Z. X. Wei, Y. Q. Liu, M. H. Liu, L. Jiang, X. H. Bao, L. J. Wan, and C. L. Bai, Progress of nanoscience in China, Front. Phys. 9(3), 257 (2014)
13 G. X. Guo, L. Zhang, and Y. Zhang, Molecular dynamics study of the infiltration of lipid-wrapping C60 and polyhydroxylated single-walled nanotubes into lipid bilayers, Front. Phys. 10(2), 177 (2015)
14 M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds, Nanoscale hydrodynamics- enhanced flow in carbon nanotubes, Nature 438(7064), 44 (2005)
15 J. K. Holt, H. G. Park, Y. M. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science 312(5776), 1034 (2006)
16 J. A. Thomas and A. J. H. McGaughey, Water flow in carbon nanotubes: Transition to subcontinuum transport, Phys. Rev. Lett. 102(18), 184502 (2009)
17 C. Lee, C. Cottin-Bizonne, A. L. Biance, P. Joseph, L. Bocquet, and C. Ybert, Osmotic flow through fully permeable nanochannels, Phys. Rev. Lett. 112(24), 244501 (2014)
18 A. Kalra, S. Garde, and G. Hummer, Osmotic water transport through carbon nanotube membranes, Proc. Natl. Acad. Sci. USA 100(18), 10175 (2003)
19 A. Ajdari and L. Bocquet, Giant amplification of interfacially driven transport by hydrodynamic slip: Diffusioosmosis and beyond, Phys. Rev. Lett. 96(18), 186102 (2006)
20 M. J. Longhurst and N. Quirke, Temperature-driven pumping of fluid through single-walled carbon nanotubes, Nano Lett. 7(11), 3324 (2007)
21 Q. L. Zhang, W. Z. Jiang, J. Liu, R. D. Miao, and N. Sheng, Water transport through carbon nanotubes with the radial breathing mode, Phys. Rev. Lett. 110(25), 254501 (2013)
22 Y. Wang, Y. J. Zhao, and J. P. Huang, Giant pumping of single-file water molecules in a carbon nanotube, J. Phys. Chem. B 115(45), 13275 (2011)
23 X. W. Meng, Y. Wang, Y. J. Zhao, and J. P. Huang, Gating of a water nanochannel driven by dipolar molecules, J. Phys. Chem. B 115(16), 4768 (2011)
24 Z. Chi, C. Luo, and Y. Dai, Comment on “Electrical-driven transport of endohedral fullerene encapsulating a single water molecule, Phys. Rev. Lett. 113(11), 119601 (2014)
25 K. F. Rinne, S. Gekle, D. J. Bonthuis, and R. R. Netz, Nanoscale pumping of water by AC electric fields, Nano Lett. 12(4), 1780 (2012)
26 S. de Luca, B. D. Todd, J. S. Hansen, and P. J. Daivis, Electropumping of water with rotating electric fields, J. Chem. Phys. 138(15), 154712 (2013)
27 X. P. Li, G. P. Kong, X. Zhang, and G. W. He, Pumping of water through carbon nanotubes by rotating electric field and rotating magnetic field, Appl. Phys. Lett. 103(14), 143117 (2013)
28 J. Wong-ekkabut, M. S. Miettinen, C. Dias, and M. Karttunen, Static charges cannot drive a continuous flow of water molecules through a carbon nanotube, Nat. Nanotechnol. 5(8), 555 (2010)
29 J. Su and H. X. Guo, Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field, ACS Nano 5(1), 351 (2011)
30 M. O. Jensen, E. Tajkhorshid, and K. Schulten, Electrostatic tuning of permeation and selectivity in aquaporin water channels, Biophys. J. 85(5), 2884 (2003)
31 E. Tajkhorshid, P. Nollert, M. O. Jensen, L. J. W. Miercke, J. O’Connell, R. M. Stroud, and K. Schulten, Control of the selectivity of the aquaporin water channel family by global orientational tuning, Science 296(5567), 525 (2002)
32 B. L. de Groot, T. Frigato, V. Helms, and H. Grubmuller, The mechanism of proton exclusion in the aquaporin-1 water channel, J. Mol. Biol. 333(2), 279 (2003)
33 J. S. Hub and B. L. de Groot, Mechanism of selectivity in aquaporins and aquaglyceroporins, Proc. Natl. Acad. Sci. USA 105(4), 1198 (2008)
34 B. L. de Groot and H. Grubmuller, Water permeation across biological membranes: Mechanism and dynamics of aquaporin-1 and GlpF, Science 294(5550), 2353 (2001)
35 J. P. Huang, K. W. Yu, and G. Q. Gu, Electrorotation of a pair of spherical particles, Phys. Rev. E 65(2), 021401 (2002)
36 J. P. Huang, M. Karttunen, K. W. Yu, and L. Dong, Dielectrophoresis of charged colloidal suspensions, Phys. Rev. E 67(2), 021403 (2003)
37 T. Meissner and F. J. Wentz, IEEE transactions on geoscience and remote sensing, Complex Dielectric Constant of Pure and Sea Water from Microwave Satellite Observations 42(9), 1836 (2004)
38 J. P. Huang and K. W. Yu, Enhanced nonlinear optical responses of materials: Composite effects, Phys. Rep. 431(3), 87 (2006)
39 G. Chen, P. Tan, S. Chen, J. P. Huang, W. Wen, and L. Xu, Coalescence of pickering emulsion droplets induced by an electric field, Phys. Rev. Lett. 110(6), 064502 (2013)
40 P. Debye, PolarMolecules, Chemical Catalog Company, New York, 1929
41 J. T. Kindt and C. A. Schmuttenmaer, Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy, J. Phys. Chem. 100(24), 10373 (1996)
42 C. Ro?nne, L. Thrane, P.O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation, J. Phys. Chem. 107(14), 5319 (1997)
43 H. J. Liebe, G. A. Hufford, and T. Manabe, A model for the complex permittivity of water at frequencies below 1 THz, J. Infrared Millim. Terahertz Waves 12(7), 659 (1991)
44 R. Buchner, J. Barthel, and J. Stauber, The dielectric relaxation of water between 0 °C and 35 °C, Chem. Phys. Lett. 306(1−2), 57 (1999)
45 Y. Huang, X. B. Wang, J. A. Tame, and R. Pethig, Electrokinetic behaviour of colloidal particles in travelling electric fields: Studies using yeast cells, J. Phys. D Appl. Phys. 26(9), 1528 (1993)
46 S. Fiedler, S. G. Shirley, T. Schnelle, and G. Fuhr, G, Dielectrophoretic sorting of particles and cells in a microsystem, Anal. Chem. 70(9), 1909 (1998)
47 M. S. Talary, J. P. H. Burt, J. A. Tame, and R. Pethig, Electromanipulation and separation of cells using travelling electric fields, J. Phys. D Appl. Phys. 29(8), 2198 (1996)
48 U. Zimmermann, Electric field-mediated fusion and related electrical phenomena, Biochim. Biophys. Acta 694(3), 227 (1982)
49 K. Falk, F. Sedlmeier, L. Joly, R. R. Netz, and L. Bocquet, Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction, Nano Lett. 10(10), 4067 (2010)
50 B. Hess, , Gromacs-3.3, Department of Biophysical Chemistry, University of Groningen, Groningen, 2005
51 W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79(2), 926 (1983)
52 B. Mukherjee, P. K. Maiti, C. Dasgupta, and A. K. Sood, Strongly anisotropic orientational relaxation of water molecules in narrow carbon nanotubes and nanorings, ACS Nano 2(6), 1189 (2008)
53 A. B. Farimani, Y. Wu, and N. R. Aluru, Rotational motion of a singlewater molecule in a buckyball, Phys. Chem. Chem. Phys. 15(41), 17993 (2013)
54 J. Su and H. X. Guo, Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field, ACS Nano 5(1), 351 (2011)
55 H. P. Fang, R. Z. Wan, X. J. Gong, H. J. Lu, and S. Y. Li, Dynamics of single-file water chains inside nanoscale channels: physics, biological significance and applications, J. Phys. D 41(10), 103002 (2008)
56 M. D. Ma, L. M. Shen, J. Sheridan, J. Z. Liu, C. Chen, and Q. S. Zheng, Friction of water slipping in carbon nanotubes, Phys. Rev. E 83(3), 036316 (2011)
57 T. Kudernac, N. Ruangsupapichat, M. Parschau, B. Macia, N. Katsonis, S. R. Harutyunyan, K. H. Ernst, and B. L. Feringa, Electrically driven directional motion of a fourwheeled molecule on a metal surface, Nature 479(7372), 208 (2011)
58 E.W. Frey, A. A. Gooding, S. Wijeratne, and C. H. Kiang, Understanding the physics of DNA using nanoscale singlemolecule manipulation, Front. Phys. 7(5), 576 (2012)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed