Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (2): 116801   https://doi.org/10.1007/s11467-015-0519-4
  本期目录
Sniffing lung cancer related biomarkers using an oxidized graphene SAW sensor
Xin-Fang Zhang (张鑫方),Zheng-Wei Zhang (张正伟),Yan-Lan He (何焰兰),Yi-Xing Liu (刘一星),Shuang Li (黎双),Jing-Yue Fang (方靖越),Xue-Ao Zhang (张学骜),Gang Peng (彭刚)()
College of Science, National University of Defense Technology, Changsha 410073, China
 全文: PDF(384 KB)  
Abstract

Decane is one of the volatile organic compounds (VOCs) in human breath. Successful detection of decane in human breath has vast prospects for early lung cancer diagnosis. In this paper, a novel detecting device based on a filter surface acoustic wave (SAW) gas sensor is presented. SAW sensors coated with a thin oxidized graphene film were used to detect decane in parts per million (ppm) concentrations. Control and signal detection circuits were designed using a vector network analyzer with a detection resolution of insertion loss down to 0.0001 dB. The results showed that the SAW sensor could respond quickly with great sensitivity when exposed to 0.2 ppm decane. This device shows tremendous potential in medical diagnosis and environmental assessment.

Key wordsdecane    graphene oxide    lung-cancer biomarker    SAW gas sensor
收稿日期: 2015-07-31      出版日期: 2016-04-29
Corresponding Author(s): Gang Peng (彭刚)   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(2): 116801.
Xin-Fang Zhang (张鑫方),Zheng-Wei Zhang (张正伟),Yan-Lan He (何焰兰),Yi-Xing Liu (刘一星),Shuang Li (黎双),Jing-Yue Fang (方靖越),Xue-Ao Zhang (张学骜),Gang Peng (彭刚). Sniffing lung cancer related biomarkers using an oxidized graphene SAW sensor. Front. Phys. , 2016, 11(2): 116801.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0519-4
https://academic.hep.com.cn/fop/CN/Y2016/V11/I2/116801
1 Y. Adiguzel and H. Kulah, Breath sensors for lung cancer diagnosis, Biosens. Bioelectron.65, 121 (2015)
https://doi.org/10.1016/j.bios.2014.10.023
2 M. Phillips, J. Herrera, S. Krishnan, M. Zain, J. Greenberg, and R. N. Cataneo, Variation in volatile organic compounds in the breath of normal humans, J. Chromatogr. B Biomed. Sci. Appl. 729(1-2), 75 (1999)
https://doi.org/10.1016/S0378-4347(99)00127-9
3 M. Phillips, K. Gleeson, J. M. B. Hughes, J. Greenberg, R. N.Cataneo, L.Baker, and W. P. McVay, Volatile organic compounds in breath as markers of lung cancer: A cross-sectional study, Lancet 353(9168), 1930 (1999)
https://doi.org/10.1016/S0140-6736(98)07552-7
4 A. Jemal, R. Siegel, E. Ward, Y.Hao, J. Xu, T.Murray, and M. J. Thun, Cancer statistics, CA Cancer J. Clin. 58(2), 71 (2008)
https://doi.org/10.3322/CA.2007.0010
5 H. J. O’Neill, S. M. Gordon, M. H.O’Neill, R. D.Gibbons, and J. P. Szidon, A computerized classification technique for screening for the presence of breath biomarkers in lung cancer, Clin. Chem. 34(8), 1613 (1988)
6 G. Peng, M. Hakim, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, U. Tisch, and H. Haick, Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors, Br. J. Cancer 103(4), 542 (2010)
https://doi.org/10.1038/sj.bjc.6605810
7 G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, and H. Haick, Diagnosing lung cancer in exhaled breath using gold nanoparticles, Nat. Nanotechnol. 4(10), 669 (2009)
https://doi.org/10.1038/nnano.2009.235
8 X. Chen, M. Cao, Y. Li, W. Hu, P. Wang, K. Ying, and H. Pan, A study of an electronic nose for detection of lung cancer based on a virtual SAW gas sensors array and imaging recognition method, Meas. Sci. Technol. 16(8), 1535 (2005)
https://doi.org/10.1088/0957-0233/16/8/001
9 R. F. Machado, D. Laskowski, O. Deffenderfer, T. Burch, S. Zheng, P. J. Mazzone, T. Mekhail, C. Jennings, J. K. Stoller, J. Pyle, J. Duncan, R. A. Dweik, and S. C. Erzurum, Detection of lung cancer by sensor array analyses of exhaled breath, Am. J. Respir. Crit. Care Med. 171(11), 1286 (2005)
https://doi.org/10.1164/rccm.200409-1184OC
10 J. Zhang, J. Liu, Q. Peng, X. Wang, and Y. Li, Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors, Chem. Mater. 18(4), 867 (2006)
https://doi.org/10.1021/cm052256f
11 M. E. Franke, T. J. Koplin, and U. Simon, Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small 2(1), 36 (2006)
https://doi.org/10.1002/smll.200500261
12 J. Chen and N. Tsubokawa, Novel gas sensor from polymer-grafted carbon black: Vapor response of electric resistance of conducting composites prepared from poly(ethylene-block-ethylene oxide)-grafted carbon black, J. Appl. Polym. Sci. 77(11), 2437 (2000)
https://doi.org/10.1002/1097-4628(20000912)77:11<2437::AID-APP12>3.0.CO;2-F
13 J. J. Miasik, A. Hooper, and B. C. Tofield, Conducting polymer gas sensors, J. Chem. Soc. Faraday Trans. 82(4), 1117 (1986)
https://doi.org/10.1039/f19868201117
14 J. W. Jiang, Graphene versus MoS2: A short review, Front. Phys. 10(3), 106801 (2015)
https://doi.org/10.1007/s11467-015-0459-z
15 Y. Li, H. Zhang, D. W. Yan, H. F. Yin, and X. L. Cheng, Secondary plasmon resonance in graphene nanostructures, Front. Phys. 10(1), 102 (2015)
https://doi.org/10.1007/s11467-014-0430-4
16 C. Stampfer, S. Fringes, J. Güttinger, F. Molitor, C. Volk, B. Terrés, J. Dauber, S. Engels, S. Schnez, A. Jacobsen, S. Dröscher, T. Ihn, and K. Ensslin, Transport in graphene nanostructures, Front. Phys. 6(3), 271 (2011)
https://doi.org/10.1007/s11467-011-0182-3
17 Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Graphene and graphene oxide: Synthesis, properties, and applications, Adv. Mater. 22(35), 3906 (2010)
https://doi.org/10.1002/adma.201001068
18 D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, S. T. Nguyen, and R. S.Ruoff, Preparation and characterization of graphene oxide paper, Nature 448(7152), 457 (2007)
https://doi.org/10.1038/nature06016
19 Z. Zhang, X. Zhang, W. Luo, H. Yang, Y. He, Y. Liu, X. Zhang, and G. Peng, Study on adsorption and desorption of ammonia on graphene, Nanoscale Res. Lett. 10(1), 359(1) (2015)
20 M. Penza, C. Martucci, and G. Cassano, NO x gas sensing characteristics of WO3 thin films activated by noble metals (Pd, Pt, Au) layers, Sens. Actuators B Chem. 50(1), 52 (1998)
https://doi.org/10.1016/S0925-4005(98)00156-7
21 W. S. HummersJr and R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80, 1339 (1958)
https://doi.org/10.1021/ja01539a017
22 V. V. Krylov, Effect of surface phenomena in solids on surface acoustic waves, Prog. Surf. Sci. 32(1), 39 (1989)
https://doi.org/10.1016/0079-6816(89)90019-1
23 A. A. Oliner, Acoustic Surface Waves (Topics in Applied Physics Volume 24), Berlin and New York: Springer-Verlag, 1978, p. 342 (For individual items see A79-16052 to A79-16055)
24 Analytical Methods Committee, Recommendations for the definition, estimation and use of the detection limit, Analyst 112(2), 199 (1987)
https://doi.org/10.1039/an9871200199
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed