Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (2): 116802   https://doi.org/10.1007/s11467-015-0522-9
  本期目录
Synthesis of atomically thin GaSe wrinkles for strain sensors
Cong Wang1,2,Sheng-Xue Yang3,Hao-Ran Zhang2,Le-Na Du2,Lei Wang2,Feng-You Yang2,Xin-Zheng Zhang1,*(),Qian Liu1,2,*()
1. The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
2. National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
3. School of Materials Science and Engineering, Beihang University, Beijing 100191, PR China
 全文: PDF(290 KB)  
Abstract

A wrinkle-based thin-film device can be used to develop optoelectronic devices, photovoltaics, and strain sensors. Here, we propose a stable and ultrasensitive strain sensor based on two-dimensional (2D) semiconducting gallium selenide (GaSe) for the first time. The response of the electrical resistance to strain was demonstrated to be very sensitive for the GaSe-based strain sensor, and it reached a gauge factor of –4.3, which is better than that of graphene-based strain sensors. The results show us that strain engineering on a nanoscale can be used not only in strain sensors but also for a wide range of applications, such as flexible field-effect transistors, stretchable electrodes, and flexible solar cells.

Key wordsGaSe wrinkles    strain sensor
收稿日期: 2015-07-14      出版日期: 2016-04-29
Corresponding Author(s): Xin-Zheng Zhang,Qian Liu   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(2): 116802.
Cong Wang,Sheng-Xue Yang,Hao-Ran Zhang,Le-Na Du,Lei Wang,Feng-You Yang,Xin-Zheng Zhang,Qian Liu. Synthesis of atomically thin GaSe wrinkles for strain sensors. Front. Phys. , 2016, 11(2): 116802.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0522-9
https://academic.hep.com.cn/fop/CN/Y2016/V11/I2/116802
1 K. R. Allakhverdiev, M. O. Yetis, S. Ozbek, T. K. Baykara, and E. Y. Salaev, Effective nonlinear GaSe crystal: Optical properties and applications, Laser Phys. 19(5), 1092 (2009)
https://doi.org/10.1134/S1054660X09050375
2 K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, and A. Geim, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. USA 102(30), 10451 (2005)
https://doi.org/10.1073/pnas.0502848102
3 K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, Twodimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
https://doi.org/10.1038/nature04233
4 Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
https://doi.org/10.1038/nature04235
5 J. W. Jiang, Graphene versus MoS2: A short review, Front. Phys. 10(3), 106801 (2015)
https://doi.org/10.1007/s11467-015-0459-z
6 W.-J. Li, D. X. Yao, and E. W. Carlson, Tunable nano Peltier cooling device from geometric effects using a single graphene nanoribbon, Front. Phys. 9(4), 472 (2014)
https://doi.org/10.1007/s11467-014-0415-3
7 C. Stampfer, J. Güttinger, F. Molitor, C. Volk, B. Terrés, J. Dauber, S. Engels, S. Schnez, A. Jacobsen, S. Droscher, T. Ihn, and K. Ensslin, Transport in graphene nanostructures, Front. Phys. 6, 271 (2011)
https://doi.org/10.1007/s11467-011-0182-3
8 K. Novoselov, E. McCann, S. Morozov, V. I. Fal’ko, M. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. Geim, Unconventional quantum Hall effect and Berry’s phase of 2p in bilayer graphene, Nat. Phys. 2(3), 177 (2006)
https://doi.org/10.1038/nphys245
9 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457(7230), 706 (2009)
https://doi.org/10.1038/nature07719
10 A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
https://doi.org/10.1038/nmat1849
11 Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, Plasmon-induced doping of graphene, ACS Nano 6(11), 10222 (2012)
https://doi.org/10.1021/nn304028b
12 Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, Active tunable absorption enhancement with graphene nanodisk arrays, Nano Lett. 14(1), 299 (2013)
https://doi.org/10.1021/nl404042h
13 J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, Patterning of graphene, Nanoscale 4(16), 4883 (2012)
https://doi.org/10.1039/c2nr30790a
14 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)
https://doi.org/10.1038/nnano.2010.279
15 A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10(4), 1271 (2010)
https://doi.org/10.1021/nl903868w
16 H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Valley polarization in MoS2 monolayers by optical pumping, Nat. Nanotechnol. 7(8), 490 (2012)
https://doi.org/10.1038/nnano.2012.95
17 T. Scrace, Y. Tsai, B. Barman, L. Schweidenback, A. Petrou, G. Kioseoglou, I. Ozfidan, M. Korkusinski, and P. Hawrylak, Magnetoluminescence and valley polarized state of a two-dimensional electron gas in WS2 monolayers, Nat. Nanotechnol. 10(7), 603 (2015)
https://doi.org/10.1038/nnano.2015.78
18 E. J. Sie, J. W. McIver, Y. H. Lee, L. Fu, J. Kong, and N. Gedik, Valley-selective optical Stark effect in monolayer WS2, Nat. Mater. 14(3), 290 (2014)
https://doi.org/10.1038/nmat4156
19 A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoˇglu, Valley Zeeman effect in elementary optical excitations of monolayer WSe2, Nat. Phys. 11(2), 141 (2015)
https://doi.org/10.1038/nphys3203
20 A. M. Jones, H. Yu, J. S. Ross, P. Klement, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2, Nat. Phys. 10(2), 130 (2014)
https://doi.org/10.1038/nphys2848
21 X. Zhou, J. Cheng, Y. Zhou, T. Cao, H. Hong, Z. Liao, S. Wu, H. Peng, K. Liu, and D. Yu, Strong second-harmonic generation in atomic layered GaSe, J. Am. Chem. Soc. (2015)
https://doi.org/10.1021/jacs.5b04305
22 X. Yuan, L. Tang, S. Liu, P. Wang, Z. G. Chen, C. Zhang, Y. Liu, W. Wang, Y. Zou, C. Liu, N. Guo, J. Zou, P. Zhou, W. Hu, and F. Xiu, Arrayed van der Waals vertical heterostructures based on 2D GaSe grown by molecular beam epitaxy, Nano Lett. 15(5), 3571 (2015)
https://doi.org/10.1021/acs.nanolett.5b01058
23 D. J. Late, B. Liu, J. Luo, A. Yan, H. S. Matte, M. Grayson, C. N. Rao, and V. P. Dravid, GaS and GaSe ultrathin layer transistors, Adv. Mater. 24(26), 3549 (2012)
https://doi.org/10.1002/adma.201201361
24 S. Lei, L. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai, and P. M. Ajayan, Synthesis and photoresponse of large GaSe atomic layers, Nano Lett. 13(6), 2777 (2013)
https://doi.org/10.1021/nl4010089
25 Y. Zhou, Y. Nie, Y. Liu, K. Yan, J. Hong, C. Jin, Y. Zhou, J. Yin, Z. Liu, and H. Peng, Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets, ACS Nano 8(2), 1485 (2014)
https://doi.org/10.1021/nn405529r
26 Y. Cao, K. Cai, P. Hu, L. Zhao, T. Yan, W. Luo, X. Zhang, X.Wu, K.Wang, and H. Zheng, Strong enhancement of photoresponsivity with shrinking the electrodes spacing in few layer GaSe photodetectors, Sci. Rep. 5, 8130 (2015)
https://doi.org/10.1038/srep08130
27 X. Li, M. W. Lin, A. A. Puretzky, J. C. Idrobo, C. Ma, M. Chi, M. Yoon, C. M. Rouleau, and D. B. Kravchenko, Geohegan, and K. Xiao, Controlled vapor phase growth of single crystalline, two-dimensional GaSe crystals with high photoresponse, Sci. Rep. 4, 5497 (2014)
28 L. Karvonen, A. Säynätjoki, S. Mehravar, R. D. Rodriguez, S. Hartmann, D. R. Zahn, S. Honkanen, R. A. Norwood, N. Peyghambarian, and K. Kieu, Investigation of second-and third-harmonic generation in few-layer gallium selenide by multiphoton microscopy, Sci. Rep. 5, 10334 (2015)
https://doi.org/10.1038/srep10334
29 W. Jie, X. Chen, D. Li, L. Xie, Y. Y. Hui, S. P. Lau, X. Cui, and J. Hao, Layer-dependent nonlinear optical properties and stability of non-centrosymmetric modification in few-layer gase sheets, Angew. Chem. 127(4), 1201 (2015)
https://doi.org/10.1002/ange.201409837
30 J. Zhao, C. He, R. Yang, Z. Shi, M. Cheng, W. Yang, G. Xie, D. Wang, D. Shi, and G. Zhang, Ultra-sensitive strain sensors based on piezoresistive nanographene films, Appl. Phys. Lett. 101(6), 063112 (2012)
https://doi.org/10.1063/1.4742331
31 Y. Wang, R. Yang, Z. W. Shi, L. C. Zhang, D. X. Shi, E. Wang, and G. Y. Zhang, Super-elastic graphene ripples for flexible strain sensors, ACS Nano 5(5), 3645 (2011)
https://doi.org/10.1021/nn103523t
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed