Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (3): 118501   https://doi.org/10.1007/s11467-015-0528-3
  本期目录
Optical properties of Au-core Pt-shell nanorods studied using FDTD simulations
Jian-Bo Liu1,*(),Lin Long2,Yu-Shi Zhang1,Yue-Ping Wang1,Feng-Shou Liu1,Wei-Yao Xu1,Ming-Ji Zong1,Lei Ma1,Wen-Qi Liu3,Hui Zhang3,Jiao Yan3,Jia-Qi Chen3,Ying-Lu Ji3,Xiao-Chun Wu3,*()
1. College of Opto-electronic Engineering, Zaozhuang University, Zaozhuang 277100, China
2. Zaozhuang Municipal Center for Disease Control and Prevention, Zaozhuang 277100, China
3. CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
 全文: PDF(636 KB)  
Abstract

Au-core/Pt-shell nanorods (Au@Pt NRs) have been prepared by a Au nanorod-mediated growth method, and they exhibit high electromagnetic field enhancements under coupling conditions. Boosted by a long-range effect of the high electromagnetic field generated by the Au core, the electromagnetic field enhancement can be controlled by changing the morphology of the nanostructures. In this study, we report the results on the simulations of the electromagnetic field enhancement using a finite difference time domain (FDTD) method, taking the real shapes of the Au@Pt NRs into account. Due to the “hot spot” effect, the electromagnetic field can be localized between the Pt nanodots. The electromagnetic field enhancement is found to be rather independent of the Pt content, whereas the local roughness and small sharp features might significantly modify the near-field. As the electromagnetic field enhancement can be tuned by the distribution of Pt nanodots over the Au-core, Au@Pt NRs can find potential applications in related areas.

Key wordsgold    platinum    core-shell    nanorod    FDTD
收稿日期: 2015-08-16      出版日期: 2016-06-08
Corresponding Author(s): Jian-Bo Liu,Xiao-Chun Wu   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(3): 118501.
Jian-Bo Liu,Lin Long,Yu-Shi Zhang,Yue-Ping Wang,Feng-Shou Liu,Wei-Yao Xu,Ming-Ji Zong,Lei Ma,Wen-Qi Liu,Hui Zhang,Jiao Yan,Jia-Qi Chen,Ying-Lu Ji,Xiao-Chun Wu. Optical properties of Au-core Pt-shell nanorods studied using FDTD simulations. Front. Phys. , 2016, 11(3): 118501.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0528-3
https://academic.hep.com.cn/fop/CN/Y2016/V11/I3/118501
1 X. H. Xia and Y. N. Xia, Gold nanocages as multifunctional materials for nanomedicine, Front. Phys. 9(3), 378 (2014)
https://doi.org/10.1007/s11467-013-0318-8
2 S. Linic, P. Christopher, H. Xin, and A. Marimuthu, Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties, Acc. Chem. Res. 46(8), 1890 (2013)
https://doi.org/10.1021/ar3002393
3 R. Ghosh Chaudhuri, and S. Paria, Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications, Chem. Rev. 112(4), 2373 (2012)
https://doi.org/10.1021/cr100449n
4 O. Nicoletti, F. de La Peña, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles, Nature 502(7469), 80 (2013)
https://doi.org/10.1038/nature12469
5 Y. L. Zhao, Y. L. Song, W. G. Song, W. Liang, X. Y. Jiang, Z. Y. Tang, H. X. Xu, Z. X. Wei, Y. Q. Liu, M. H. Liu, L. Jiang, X. H. Bao, L. J. Wan, and C. L. Bai, Progress of nanoscience in China, Front. Phys. 9(3), 257 (2014)
https://doi.org/10.1007/s11467-013-0324-x
6 Z. Y. Li, Nanophotonics in China: Overviews and highlights, Front. Phys. 7(6), 601 (2012)
https://doi.org/10.1007/s11467-012-0276-6
7 J. S. Miao, W. D. Hu, Y. L. Jing, W. J. Luo, L. Liao, A. L. Pan, S. W. Wu, J. X. Cheng, X. S. Chen, and W. Lu, Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays, Small 11(20), 2392 (2015)
https://doi.org/10.1002/smll.201403422
8 S. P. Zhang, H. Wei, K. Bao, U. Hakanson, N. J. Halas, P. Nordlander, and H. X. Xu, Chiral surface plasmon polaritons on metallic nanowires, Phys. Rev. Lett. 107(9), 096801 (2011)
https://doi.org/10.1103/PhysRevLett.107.096801
9 S. J. Barrow, X. Wei, J. S. Baldauf, A. M. Funston, and P. Mulvaney, The surface plasmon modes of self-assembled gold nanocrystals, Nat. Commun. 3, 1275 (2012)
https://doi.org/10.1038/ncomms2289
10 L. M. Tong and H. X. Xu, Frontiers of plasmonics, Front. Phys. 9(1), 1 (2014)
https://doi.org/10.1007/s11467-013-0399-4
11 R. A. Alvarez-Puebla, A. Agarwal, P. Manna, B. P. Khanal, P. Aldeanueva-Potel, E. Carbó-Argibay, N. Pazos-Pérez, L. Vigderman, E. R. Zubarev, N. A. Kotov, and L. M. Liz-Marzan, Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions, Proc. Natl. Acad. Sci. USA 108(20), 8157 (2011)
https://doi.org/10.1073/pnas.1016530108
12 E. C. Le Ru and P. G. Etchegoin, Single-molecule surface-enhanced Raman spectroscopy, Annu. Rev. Phys. Chem. 63(1), 65 (2012)
https://doi.org/10.1146/annurev-physchem-032511-143757
13 G. McNay, D. Eustace, W. E. Smith, K. Faulds, and D. Graham, Surface-enhanced raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): A review of applications, Appl. Spectrosc. 65(8), 825 (2011)
https://doi.org/10.1366/11-06365
14 Y. S. Yamamoto, M. Ishikawa, Y. Ozaki, and T. Itoh, Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing, Front. Phys. 9(1), 31 (2014)
https://doi.org/10.1007/s11467-013-0347-3
15 Z. Kim, Single-molecule surface-enhanced Raman scattering: Current status and future perspective, Front. Phys. 9(1), 25 (2014)
https://doi.org/10.1007/s11467-013-0338-4
16 Y. Zhang, J. Qian, D. Wang, Y. L. Wang, and S. L. He, Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy, Angew. Chem. Int. Ed. 52(4), 1148 (2013)
https://doi.org/10.1002/anie.201207909
17 N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced raman spectroscopy, Nano Lett. 10(12), 4952 (2010)
https://doi.org/10.1021/nl102963g
18 K. H. Su, S. Durant, J. M. Steele, Y. Xiong, C. Sun, and X. Zhang, Raman enhancement factor of a single tunable nanoplasmonic resonator, J. Phys. Chem. B 110(9), 3964 (2006)
https://doi.org/10.1021/jp055566u
19 L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms, Nano Lett. 6(9), 2060 (2006)
https://doi.org/10.1021/nl061286u
20 S. Wang, D. F. Pile, C. Sun, and X. Zhang, Nanopin plasmonic resonator array and its optical properties, Nano Lett. 7(4), 1076 (2007)
https://doi.org/10.1021/nl062911y
21 Y. Z. He, J. X. Fu, and Y. P. Zhao, Oblique angle deposition and its applications in plasmonics, Front. Phys. 9(1), 47 (2014)
https://doi.org/10.1007/s11467-013-0357-1
22 F. Z. Cong, H. Wei, X. R. Tian, and H. X. Xu, A facile synthesis of branched silver nanowire structures and its applications in surface-enhanced Raman scattering, Front. Phys. 7(5), 521 (2012)
https://doi.org/10.1007/s11467-012-0255-y
23 W. Y. Rao, Q. Li, Y. Z. Wang, T. Li, and L. J. Wu, Comparison of photoluminescence quantum yield of single gold nanobipyramids and gold nanorods, ACS Nano 9(3), 2783 (2015)
https://doi.org/10.1021/nn506689b
24 S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods, ACS Nano 8(5), 4440 (2014)
https://doi.org/10.1021/nn406434y
25 Z. L. Zhang, L. Chen, S. X. Sheng, M. T. Sun, H. R. Zheng, K. Q. Chen, and H. X. Xu, High-vacuum tip enhanced Raman spectroscopy, Front. Phys. 9(1), 17 (2014)
https://doi.org/10.1007/s11467-013-0364-2
26 B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, SERS: Materials, applications, and the future, Mater. Today 15(1-2), 16 (2012)
https://doi.org/10.1016/S1369-7021(12)70017-2
27 K. Ikeda, J. Sato, N. Fujimoto, N. Hayazawa, S. Kawata, and K. Uosaki, Plasmonic enhancement of Raman scattering on non-SERS-active platinum substrates, J. Phys. Chem. C 113(27), 11816 (2009)
https://doi.org/10.1021/jp901858t
28 J. F. Li, Z. L. Yang, B. Ren, G. K. Liu, P. P. Fang, Y. X. Jiang, D. Y. Wu, and Z. Q. Tian, Surface-enhanced Raman spectroscopy using gold-core platinum-shell nanoparticle film electrodes: toward a versatile vibrational strategy for electrochemical interfaces, Langmuir 22(25), 10372 (2006)
https://doi.org/10.1021/la061366d
29 Z. Q. Tian, B. Ren, J. F. Li, and Z. L. Yang, Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy, Chem. Commun. (34), 3514 (2007)
https://doi.org/10.1039/b616986d
30 L. P. Xia, Z. Yang, S. Y. Yin, W. R. Guo, J. L. Du, and C. L. Du, Hole arrayed metal-insulator-metal structure for surface enhanced Raman scattering by self-assembling polystyrene spheres, Front. Phys. 9(1), 64 (2014)
https://doi.org/10.1007/s11467-013-0345-5
31 N. R. Jana, L. Gearheart, and C. J. Murphy, Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template, Adv. Mater. 13(18), 1389 (2001)
https://doi.org/10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F
32 D. W. Lynch and W. R. Hunter, in: Handbook of Optical Constants of Solids, edited by E. D. Palik, New York: Academic Press, 1985, pp 350–356
33 M. Grzelczak, J. Pérez-Juste, B. Rodríguez-González, and L. M. Liz-Marzán, Influence of silver ions on the growth mode of platinum on gold nanorods, J. Mater. Chem. 16(40), 3946 (2006)
https://doi.org/10.1039/b606887a
34 M. Grzelczak, J. Perez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, Optical properties of platinum-coated gold nanorods, J. Phys. Chem. C 111(17), 6183 (2007)
https://doi.org/10.1021/jp0671502
35 L. L. Feng, X. C. Wu, L. R. Ren, Y. J. Xiang, W. W. He, K. Zhang, W. Y. Zhou, and S. S. Xie, Well-controlled synthesis of Au@Pt nanostructures by gold-nanorod-seeded growth, Chemistry 14(31), 9764 (2008)
https://doi.org/10.1002/chem.200800544
36 Z. L. Wang, M. Mohamed, S. Link, and M. El-Sayed, Crystallographic facets and shapes of gold nanorods of different aspect ratios, Surf. Sci. 440(1-2), L809 (1999)
https://doi.org/10.1016/S0039-6028(99)00865-1
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed