Electronic structures and magnetic properties of rare-earth-atom-doped BNNTs
Juan Ren1,3,*(),Ning-Chao Zhang2,Peng Wang1,Chao Ning1,Hong Zhang3,Xiao-Juan Peng4
1. School of Science, Xi’an Technological University, Xi’an 710032, China 2. College of Electronics and Information Engineering, Xi’an Technological University, Xi’an 710032, China 3. College of Physical Science and Technology, Sichuan University, Chengdu 610065, China 4. Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
Stable geometries, electronic structures, and magnetic properties of (8,0) and (4,4) single-walled BN nanotubes (BNNTs) doped with rare-earth (RE) atoms are investigated using the first-principles pseudopotential plane wave method with density functional theory (DFT). The results show that these RE atoms can be effectively doped in BNNTs with favorable energies. Because of the curvature effect, the values of binding energy for RE-atom–doped (4,4) BNNTs are larger than those of the same atoms on (8,0) BNNTs. Electron transfer between RE-5d, 6s, and B-2p, N-2p orbitals was also observed. Furthermore, electronic structures and magnetic properties of BNNTs can be modified by such doping. The results show that the adsorption of Ce, Pm, Sm, and Eu atoms can induce magnetization, while no magnetism is observed when BNNTs are doped with La. These results are useful for spintronics applications and for developing magnetic nanostructures.
R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Carbon nanotubes — the route toward applications, Science 297(5582), 787 (2002)
https://doi.org/10.1126/science.1060928
3
D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chemistry of carbon nanotubes, Chem. Rev. 106(3), 1105 (2006)
https://doi.org/10.1021/cr050569o
4
V. Bougrov, M. E. Levinshtein, S. L. Rumyantsev, M. E. Levin-shtein, S. L. Rumyantsev, and M. S. Shur, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe, New York: Wiley, 2001
Z. Zhou and Y. F. Li, How different are BN nanotubes from carbon nanotubes? J. Comput. Theor. Nanosci. 6(2), 327 (2009)
https://doi.org/10.1166/jctn.2009.1039
7
C. Y. Zhi, Y. Bando, C. C. Tang, and D. Golberg, Engineering of electronic structure of boron-nitride nanotubes by covalent functionalization, Phys. Rev. B 74(15), 153413 (2006)
https://doi.org/10.1103/PhysRevB.74.153413
8
L. Lai, W. Song, J. Lu, Z. Gao, S. Nagase, M. Ni, W. N. Mei, J. Liu, D. Yu, and H. Ye, Structural and electronic properties of fluorinated boron nitride nanotubes., J Phys Chem B 110(29), 14092 (2006)
https://doi.org/10.1021/jp061203y
9
J. Zhang, K. P. Loh, W. S. Yang, and P. Wu, Exohedral doping of single-walled boron nitride nanotube by atomic chemisorption, Appl. Phys. Lett. 87(24), 243105 (2005)
https://doi.org/10.1063/1.2140876
10
C. Jo, C. Kim, and Y. H. Lee, Electronic properties of K-doped single-wall carbon nanotube bundles, Phys. Rev. B 65(3), 035420 (2002)
https://doi.org/10.1103/PhysRevB.65.035420
11
J. Zhao, A. Buldum, J. Han, and J. P. Lu, 0, First-principles study of Li-intercalated carbon nanotube ropes., Phys. Rev. Lett. 85(8), 1706 (2000)
https://doi.org/10.1103/PhysRevLett.85.1706
12
J. W. Zheng, S. M. L. Nai, M. F. Ng, P. Wu, J. Wei, and M. Gupta, DFT study on nano structures of Sn/CNT complex for potential li-ion battery application, J. Phys. Chem. C 113(31), 14015 (2009)
https://doi.org/10.1021/jp809266n
13
E. Durgun, S. Dag, V. M. K. Bagci, O. Gulseren, T. Yildirim, and S. Ciraci, Systematic study of adsorption of single atoms on a carbon nanotube, Phys. Rev. B 67(20), 201401 (2003)
https://doi.org/10.1103/PhysRevB.67.201401
14
E. Durgun, S. Dag, S. Ciraci, and O. Gulseren, Energetics and electronic structures of individual atoms adsorbed on carbon nanotubes, J. Phys. Chem. B 108(2), 575 (2004)
https://doi.org/10.1021/jp0358578
15
Y. L. Mao, X. H. Yan, and Y. Xiao, First-principles study of transition-metal-doped single-walled carbon nanotubes, Nanotechnology 16(12), 3092 (2005)
https://doi.org/10.1088/0957-4484/16/12/061
16
A. Udomvech, T. Kerdcharoen, and T. Osotchan, First principles study of Li and Li+ adsorbed on carbon nanotube: Variation of tubule diameter and length, Chem. Phys. Lett. 406(1-3), 161 (2005)
https://doi.org/10.1016/j.cplett.2005.02.084
17
Q. X. Zhou, C. Y. Wang, Z. B. Fu, Y. J. Tang, and H. Zhang, Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study, Front. Phys. 9(2), 200 (2014)
https://doi.org/10.1007/s11467-013-0409-6
18
J. Ren, H. Zhang, and X. L. Cheng, Electronic and magnetic properties of all 3 d transition-metal-doped ZnO monolayers, Int. J. Quantum Chem. 113(19), 2243 (2013)
https://doi.org/10.1002/qua.24442
19
X. Wu and X. C. Zeng, Adsorption of transition-metal atoms on boron nitride nanotube: A density-functional study, J Chem Phys 125(4), 44711 (2006)
https://doi.org/10.1063/1.2218841
20
S. F. Wang, Y. Zhang, J. M. Zhang, K. W. Xu, and V. Ji, Electronic structure and optical property of 3d transition metal doped (5,5) boron nitride nanotube, Appl. Phys. A 109(3), 601 (2012)
https://doi.org/10.1007/s00339-012-7074-4
21
R. J. Baierle, T. M. Schmidt, and A. Fazzio, Adsorption of CO and NO molecules on carbon doped boron nitride nanotubes, Solid State Commun. 142(1-2), 49 (2007)
https://doi.org/10.1016/j.ssc.2007.01.036
22
Y. F. Zhukovskii, S. Bellucci, S. Piskunov, L. Trinkler, and B. Berzina, Atomic and electronic structure of single-walled BN nanotubes containing N vacancies as well as C and O substitutes of N atoms, Eur. Phys. J. B 67(4), 519 (2009)
https://doi.org/10.1140/epjb/e2009-00038-2
23
C. S. Guo, W. J. Fan, and R. Q. Zhang, Spin polarization of the injected carriers in C-doped BN nanotubes, Solid State Commun. 137(5), 246 (2006)
https://doi.org/10.1016/j.ssc.2005.11.033
24
C. Y. Zhi, X. D. Bai, and E. G. Wang, Boron carbonitride nanotubes, J Nanosci Nanotechnol 4(1-2), 35 (2004)
https://doi.org/10.1166/jnn.2004.018
H. Choi, Y. C. Park, Y. H. Kim, and Y. S. Lee, Ambient carbon dioxide capture by boron-rich boron nitride nanotube., J. Am. Chem. Soc. 133(7), 2084 (2011)
https://doi.org/10.1021/ja1101807
27
Y. Xie, Y. P. Huo, and J. M. Zhang, First-principles study of CO and NO adsorption on transition metals doped (8,0) boron nitride nanotube, Appl. Surf. Sci. 258(17), 6391 (2012)
https://doi.org/10.1016/j.apsusc.2012.03.048
28
X. M. Li, W. Q. Tian, X. R. Huang, C. C. Sun, and L. Jiang, Adsorption of hydrogen on novel Pt-doped BN nanotube: A density functional theory study, J. Mol. Struct. 901(1-3), 103 (2009)
https://doi.org/10.1016/j.theochem.2009.01.019
29
Q. Dong, X. M. Li, W. Q. Tian, X. R. Huang, and C. C. Sun, Theoretical studies on the adsorption of small molecules on Pt-doped BN nanotubes, J. Mol. Struct. 948(1-3), 83 (2010)
https://doi.org/10.1016/j.theochem.2010.02.024
30
M. T. Baei, A. R. Soltani, A. V. Moradi, and E. T. Lemeski, Adsorption properties of N2O on (6,0), (7,0), and (8,0) zigzag single-walled boron nitride nanotubes: A computational study, Comput. Theor. Chem. 970(1-3), 30 (2011)
https://doi.org/10.1016/j.comptc.2011.05.021
31
J. P. Perdew, and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev., B Condens. Matter 45(23), 13244 (1992)
https://doi.org/10.1103/PhysRevB.45.13244
32
B. Delley, From molecules to solids with the DMol[sup 3] approach, J. Chem. Phys. 113(18), 7756 (2000)
https://doi.org/10.1063/1.1316015
33
A. Rubio-Ponce, A. Conde-Gallardo, and D. Olguin, First-principles study of anatase and rutile TiO2 doped with Eu ions: A comparison of GGA and LDA+ U calculations, Phys. Rev. B 78(3), 035107 (2008)
https://doi.org/10.1103/PhysRevB.78.035107
34
A. Delin, L. Fast, B. Johansson, O. Eriksson, and J. M. Wills, Cohesive properties of the lanthanides: Effect of generalized gradient corrections and crystal structure, Phys. Rev. B 58(8), 4345 (1998)
https://doi.org/10.1103/PhysRevB.58.4345
S. L. Yue and H. Zhang, First principles study on magnetic and electronic properties with rare-earth atoms doped SWCNTs, Front. Phys. 7(3), 353 (2012)
https://doi.org/10.1007/s11467-011-0209-9