Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (3): 114203   https://doi.org/10.1007/s11467-015-0547-0
  本期目录
Enhanced phase sensitivity of an SU(1,1) interferometer with displaced squeezed vacuum light
Xiao-Yu Hu (胡小玉),Chao-Ping Wei (魏朝平),Ya-Fei Yu (於亚飞)(),Zhi-Ming Zhang(张智明)()
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices (SIPSE) & Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China
 全文: PDF(342 KB)  
Abstract

We study the phase sensitivity of an SU(1,1) interferometer with two input beams in the displaced squeezed vacuum state and the coherent state, respectively. We find that there exists an optimal squeezing fraction of the displaced squeezed vacuum state that optimizes the phase sensitivity. We also examine the effects of some factors, including the loss, mean photon number of the input beams and amplitude gain of the optical parameter amplifiers, on the optimal squeezing fraction so that we can choose the optimal values to enhance the phase sensitivity.

Key wordsphase sensitivity    SU(1,1) interferometer    displaced squeezed vacuum state    optimal squeezing fraction
收稿日期: 2015-10-28      出版日期: 2016-06-08
Corresponding Author(s): Ya-Fei Yu (於亚飞),Zhi-Ming Zhang(张智明)   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(3): 114203.
Xiao-Yu Hu (胡小玉),Chao-Ping Wei (魏朝平),Ya-Fei Yu (於亚飞),Zhi-Ming Zhang(张智明). Enhanced phase sensitivity of an SU(1,1) interferometer with displaced squeezed vacuum light. Front. Phys. , 2016, 11(3): 114203.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0547-0
https://academic.hep.com.cn/fop/CN/Y2016/V11/I3/114203
1 B. C. Sanders and G. J. Milburn, Optimal quantum measurements for phase estimation, Phys. Rev. Lett. 75(16), 2944 (1995)
https://doi.org/10.1103/PhysRevLett.75.2944
2 R. Demkowicz-Dobrzański, M. Jarzyna, and J. Kołodyński, Quantum limits in optical interferometry, Progress in Optics60, 345 (2015)
https://doi.org/10.1016/bs.po.2015.02.003
3 C. Lee, J. Huang, H. Deng, H. Dai, and J. Xu, Nonlinear quantum interferometry with Bose condensed atoms, Front. Phys. 7(1), 109 (2012)
https://doi.org/10.1007/s11467-011-0228-6
4 C. M. Caves, Quantum-mechanical noise in an interferometer, Phys. Rev. D 23(8), 1693 (1981)
https://doi.org/10.1103/PhysRevD.23.1693
5 R. S. Bondurant and J. H. Shapiro, Squeezed states in phase-sensing interferometers, Phys. Rev. D 30(12), 2548 (1984)
https://doi.org/10.1103/PhysRevD.30.2548
6 M. J. Holland and K. Burnett, Interferometric detection of optical phase shifts at the Heisenberg limit, Phys. Rev. Lett. 71(9), 1355 (1993)
https://doi.org/10.1103/PhysRevLett.71.1355
7 O. Steuernagel and S. Scheel, Approaching the Heisenberg limit with two-mode squeezed states, J. Opt. B 6(3), S66 (2004)
https://doi.org/10.1088/1464-4266/6/3/011
8 H. Lee, P. Kok, and J. P. Dowling, A quantum Rosetta stone for interferometry, J. Mod. Opt. 49(14-15), 2325 (2002)
https://doi.org/10.1080/0950034021000011536
9 J. Joo, W. J. Munro, and T. P. Spiller, Quantum metrology with entangled coherent states, Phys. Rev. Lett. 107(8), 083601 (2011)
https://doi.org/10.1103/PhysRevLett.107.083601
10 C. C. Gerry, Heisenberg-limit interferometry with four-wave mixers operating in a nonlinear regime, Phys. Rev. A 61(4), 043811 (2000)
https://doi.org/10.1103/PhysRevA.61.043811
11 C. C. Gerry, A. Benmoussa, and R. A. Campos, Nonlinear interferometer as a resource for maximally entangled photonic states: Application to interferometry, Phys. Rev. A 66(1), 013804 (2002)
https://doi.org/10.1103/PhysRevA.66.013804
12 G. A. Durkin and J. P. Dowling, Local and global distinguishability in quantum interferometry, Phys. Rev. Lett. 99(7), 070801 (2007)
https://doi.org/10.1103/PhysRevLett.99.070801
13 M. A. Rubin and S. Kaushik, Loss-induced limits to phase measurement precision with maximally entangled states, Phys. Rev. A 75(5), 053805 (2007)
https://doi.org/10.1103/PhysRevA.75.053805
14 G. Gilbert, M. Hamrick, and Y. S. Weinstein, Practical quantum interferometry using photonic N00N states, Proc. SPIE 6573, 65730K (2007)
https://doi.org/10.1117/12.719896
15 K. Jiang, C. J. Brignac, Y. Weng, M. B. Kim, H. Lee, and J. P. Dowling, Strategies for choosing path-entangled number states for optimal robust quantum-optical metrology in the presence of loss, Phys. Rev. A 86(1), 013826 (2012)
https://doi.org/10.1103/PhysRevA.86.013826
16 S. D. Huver, C. F. Wildfeuer, and J. P. Dowling, Entangled Fock states for robust quantum optical metrology, imaging, and sensing, Phys. Rev. A 78(6), 063828 (2008)
https://doi.org/10.1103/PhysRevA.78.063828
17 J. Fiurášek, Conditional generation of N-photon entangled states of light, Phys. Rev. A 65(5), 053818 (2002)
https://doi.org/10.1103/PhysRevA.65.053818
18 M. D. Lang and C. M. Caves, Optimal quantum-enhanced interferometry using a laser power source, Phys. Rev. Lett. 111(17), 173601 (2013)
https://doi.org/10.1103/PhysRevLett.111.173601
19 B. Yurke, S. L. McCall, and J. R. Klauder, SU(2) and SU(1,1) interferometers, Phys. Rev. A 33(6), 4033 (1986)
https://doi.org/10.1103/PhysRevA.33.4033
20 W. N. Plick, J. P. Dowling, and G. S. Agarwal, Coherent-light-boosted, sub-shot noise, quantum interferometry, New J. Phys. 12(8), 083014 (2010)
https://doi.org/10.1088/1367-2630/12/8/083014
21 D. Li, C. H. Yuan, Z. Y. Ou, and W. Zhang, The phase sensitivity of an SU(1,1) interferometer with coherent and squeezed-vacuum light, New J. Phys. 16(7), 073020 (2014)
https://doi.org/10.1088/1367-2630/16/7/073020
22 A. Monras, Optimal phase measurements with pure Gaussian states, Phys. Rev. A 73(3), 033821 (2006)
https://doi.org/10.1103/PhysRevA.73.033821
23 O. Pinel, P. Jian, N. Treps, C. Fabre, and D. Braun, Quantum parameter estimation using general single-mode Gaussian states, Phys. Rev. A 88(4), 040102(R) (2013)
https://doi.org/10.1103/PhysRevA.88.040102
24 Z. Y. Ou, Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer, Phys. Rev. A 85(2), 023815 (2012)
https://doi.org/10.1103/PhysRevA.85.023815
25 A. M. Marino, N. V. Corzo Trejo, and P. D. Lett, Effect of losses on the performance of an SU(1,1) interferometer, Phys. Rev. A 86(2), 023844 (2012)
https://doi.org/10.1103/PhysRevA.86.023844
26 W. N. Plick, P. M. Anisimov, J. P. Dowling, H. Lee, and G. S. Agarwal, Parity detection in quantum optical metrology without number-resolving detectors, New J. Phys. 12(11), 113025 (2010)
https://doi.org/10.1088/1367-2630/12/11/113025
27 U. Dorner, R. Demkowicz-Dobrzanski, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, Optimal quantum phase estimation, Phys. Rev. Lett. 102(4), 040403 (2009)
https://doi.org/10.1103/PhysRevLett.102.040403
28 T. Ono and H. F. Hofmann, Effects of photon losses on phase estimation near the Heisenberg limit using coherent light and squeezed vacuum, Phys Rev. A 81(3), 033819 (2010)
https://doi.org/10.1103/PhysRevA.81.033819
29 Y. M. Zhang, X. W. Li, W. Yang, and G. R. Jin, Quantum Fisher information of entangled coherent states in the presence of photon loss, Phys. Rev. A 88(4), 043832 (2013)
https://doi.org/10.1103/PhysRevA.88.043832
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed