Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (5): 111403   https://doi.org/10.1007/s11467-016-0541-1
  本期目录
Light dark sector searches at low-energy high-luminosity e+e colliders
Peng-Fei Yin1,*(),Shou-Hua Zhu2,3,4
1. Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2. Institute of Theoretical Physics & State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
3. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
4. Center for High Energy Physics, Peking University, Beijing 100871, China
 全文: PDF(688 KB)  
Abstract

Although the standard model (SM) is extremely successful, there are various motivations for considering the physics beyond the SM. For example, the SM includes neither dark energy nor dark matter, which has been confirmed through astrophysical observations. Examination of the dark sector, which contains new, light, weakly-coupled particles at the GeV scale or lower, is well motivated by both theory and dark-matter detection experiments. In this mini-review, we focus on one particular case in which these new particles can interact with SM particles through a kinematic mixing term between U(1) gauge bosons. The magnitude of the mixing can be parameterized by a parameter ϵ. Following a brief overview of the relevant motivations and the constraints determined from numerous experiments, we focus on the light dark sector phenomenology at low-energy high-luminosity e+e colliders. These colliders are ideal for probing the new light particles, because of their large production rates and capacity for precise resonance reconstruction. Depending on the details of a given model, the typical observed signatures may also contain multi lepton pairs, displaced vertices, and/or missing energy. Through the use of extremely large data samples from existing experiments, such as KLOE, CLEO, BABAR, Belle, and BESIII, the ϵ<10−4–10−3 constraint can be obtained. Obviously, future experiments with larger datasets will provide opportunities for the discovery of new particles in the dark sector, or for stricter upper limits on ϵ. Once the light dark sector is confirmed, the particle physics landscape will be changed significantly.

Key wordsdark photon    electron-positron collider    dark matter
收稿日期: 2015-10-02      出版日期: 2016-06-08
Corresponding Author(s): Peng-Fei Yin   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(5): 111403.
Peng-Fei Yin,Shou-Hua Zhu. Light dark sector searches at low-energy high-luminosity e+e colliders. Front. Phys. , 2016, 11(5): 111403.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0541-1
https://academic.hep.com.cn/fop/CN/Y2016/V11/I5/111403
1 S. H. Zhu, Recent progress in physics beyond the standard model, Front. Phys.8, 241 (2013)
https://doi.org/10.1007/s11467-013-0335-7
2 Y. Hu, Y. K. Wang, P. F. Yin, and S. H. Zhu, On physics beyond standard model, Front. Phys.8, 516 (2013)
https://doi.org/10.1007/s11467-013-0382-0
3 S. H. Zhu, A new paradigm: Role of electron-positron and hadron colliders, arXiv: 1410.2042 [hep-ph]
4 J. L. Hewett, H. Weerts, R. Brock, J. N. Butler, B. C. K. Casey, , Fundamental physics at the intensity frontier, arXiv: 1205.2671 [hep-ex]
5 R. Essig, J. A. Jaros, W. Wester, P. H. Adrian, S. Andreas, , Dark sectors and new, light, weakly-coupled particles, arXiv: 1311.0029 [hep-ph]
6 N. Borodatchenkova, D. Choudhury, and M. Drees, Probing MeV dark matter at low-energy e+e– colliders, Phys. Rev. Lett. 96, 141802 (2006), arXiv: hep-ph/0510147
https://doi.org/10.1103/PhysRevLett.96.141802
7 P. Fayet, U-boson production in e+e– annihilations, psi and upsilon decays, and light dark matter, Phys. Rev. D75, 115017 (2007), arXiv: hep-ph/0702176 [hep-ph]
https://doi.org/10.1103/PhysRevD.75.115017
8 B. Batell, M. Pospelov, and A. Ritz, Probing a secluded U(1) at B-factories, Phys. Rev. D 79, 115008 (2009), arXiv: 0903.0363 [hep-ph]
https://doi.org/10.1103/PhysRevD.79.115008
9 R. Essig, P. Schuster, and N. Toro, Probing dark forces and light hidden sectors at low-energy e+e– colliders, Phys. Rev. D 80, 015003 (2009), arXiv: 0903.3941 [hep-ph]
https://doi.org/10.1103/PhysRevD.80.015003
10 M. Reece and L.-T. Wang, Searching for the light dark gauge boson in GeV-scale experiments, J. High Energy Phys. 0907, 051 (2009), arXiv: 0904.1743 [hep-ph]
11 P.-F. Yin, J. Liu, and S.-H. Zhu, Detecting light leptophilic gauge boson at BESIII detector, Phys. Lett. B 679, 362 (2009), arXiv: 0904.4644 [hep-ph]
https://doi.org/10.1016/j.physletb.2009.07.014
12 L. Barze, G. Balossini, C. Bignamini, C. M. Carloni Calame, G. Montagna, O. Nicrosini, and F. Piccinini, Probing dark forces at GeV-scale colliders, Acta Phys. Polon. B 42, 2461 (2011)
https://doi.org/10.5506/APhysPolB.42.2461
13 B. Holdom, Two U(1)'s and epsilon charge shifts, Phys. Lett. B 166, 196 (1986)
https://doi.org/10.1016/0370-2693(86)91377-8
14 N. Arkani-Hamed and N. Weiner, LHC signals for a superunified theory of dark matter, J. High Energy Phys.0812, 104 (2008), arXiv: 0810.0714 [hep-ph]
https://doi.org/10.1088/1126-6708/2008/12/104
15 M. Baumgart, C. Cheung, J. T. Ruderman, L.-T. Wang, and I. Yavin, Non-Abelian dark sectors and their collider signatures,J. High Energy Phys.0904, 014 (2009), arXiv: 0901.0283 [hep-ph]
16 S. A. Abel, M. D. Goodsell, J. Jaeckel, V. V. Khoze, and A. Ringwald, Kinetic mixing of the photon with hidden U(1)s in string phenomenology, J. High Energy Phys. 0807, 124 (2008), arXiv: 0803.1449 [hep-ph]
https://doi.org/10.1088/1126-6708/2008/07/124
17 M. Goodsell, J. Jaeckel, J. Redondo, and A. Ringwald, Naturally light hidden photons in LARGE volume string compactifications, J. High Energy Phys. 0911, 027 (2009), arXiv: 0909.0515 [hep-ph]
18 C. Cheung, J. T. Ruderman, L.-T. Wang, and I. Yavin, Kinetic mixing as the origin of light dark scales, Phys. Rev. D 80, 035008 (2009), arXiv: 0902.3246 [hep-ph]
https://doi.org/10.1103/PhysRevD.80.035008
19 M. A. Deliyergiyev, Recent progress in search for hidden/dark photon, arXiv: 1510.06927 [hep-ph].
20 O. Adriani, (PAMELA Collaboration), An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV, Nature458, 607 (2009), arXiv: 0810.4995 [astro-ph]
https://doi.org/10.1038/nature07942
21 J. Chang, J. H. Adams, H. S. Ahn, G. L. Bashindzhagyan, M. Christl, , An excess of cosmic ray electrons at energies of 300–800 GeV, Nature456, 362 (2008)
https://doi.org/10.1038/nature07477
22 A. A. Abdo, (Fermi LAT Collaboration), Measurement of the cosmic ray e+ plus e– spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, Phys. Rev. Lett. 102, 181101 (2009), arXiv: 0905.0025 [astro-ph.HE]
https://doi.org/10.1103/PhysRevLett.102.181101
23 M. Aguilar, (AMS Collaboration), First result from the alpha magnetic spectrometer on the international space station: Precision measurement of the positron fraction in primary cosmic rays of 0.5C350 GeV,Phys. Rev. Lett. 110(14), 141102 (2013)
https://doi.org/10.1103/PhysRevLett.110.141102
24 O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Boezio, , A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation, Phys. Rev. Lett.102, 051101 (2009), arXiv: 0810.4994 [astro-ph]
25 AMS Collaboration, Talks at the “AMS Days at CERN”, <Date>April 15–17, 2015</Date>
26 N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, A theory of dark matter, Phys. Rev. D 79, 015014 (2009), arXiv: 0810.0713 [hep-ph]
https://doi.org/10.1103/PhysRevD.79.015014
27 M. Pospelov and A. Ritz, Astrophysical signatures of secluded dark matter, Phys. Lett. B 671, 391 (2009), arXiv: 0810.1502 [hep-ph]
https://doi.org/10.1016/j.physletb.2008.12.012
28 R. Bernabei, (DAMA Collaboration), First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C 56, 333 (2008), arXiv: 0804.2741 [astro-ph]
https://doi.org/10.1140/epjc/s10052-008-0662-y
29 C. E. Aalseth, (CoGeNT Collaboration), Results from a search for light-mass dark matter with a P-type point contact germanium detector, Phys. Rev. Lett. 106, 131301 (2011), arXiv:1002.4703 [astro-ph.CO]
https://doi.org/10.1103/PhysRevLett.106.131301
30 G. Angloher, M. Bauer, I. Bavykina, A. Bento, C. Bucci, , Results from 730 kg days of the CRESST-II dark matter search, Eur. Phys. J. C72, 1971 (2012), arXiv: 1109.0702 [astro-ph.CO]
https://doi.org/10.1140/epjc/s10052-012-1971-8
31 P. Draper, T. Liu, C. E. M. Wagner, L. T. Wang, and H. Zhang, Dark light Higgs, Phys. Rev.Lett. 106, 121805 (2011), arXiv: 1009.3963 [hep-ph]
https://doi.org/10.1103/PhysRevLett.106.121805
32 S. Chang, G. D. Kribs, D. Tucker-Smith, and N. Weiner, Inelastic dark matter in light of DAMA/LIBRA, Phys. Rev. D79, 043513 (2009), arXiv: 0807.2250 [hep-ph]
https://doi.org/10.1103/PhysRevD.79.043513
33 A. W. Strong, R. Diehl, H. Halloin, V. Schoenfelder, L. Bouchet, P. Mandrou, F. Lebrun, and R. Terrier, Gamma-ray continuum emission from the inner galactic region as observed with INTEGRAL/SPI, Astron. Astrophys.444, 495 (2005), arXiv: astro-ph/0509290
https://doi.org/10.1051/0004-6361:20053798
34 C. Boehm, D. Hooper, J. Silk, M. Casse, and J. Paul, MeV dark matter: Has it been detected? Phys. Rev. Lett. 92, 101301 (2004), arXiv: astro-ph/0309686
https://doi.org/10.1103/PhysRevLett.92.101301
35 D. P. Finkbeiner and N. Weiner, Exciting dark matter and the INTEGRAL/SPI 511 keV signal, Phys. Rev. D76, 083519 (2007), arXiv: astro-ph/0702587
https://doi.org/10.1103/PhysRevD.76.083519
36 L. Goodenough and D. Hooper, Possible evidence for dark matter annihilation in the inner Milky way from the Fermi gamma ray space telescope, arXiv: 0910.2998 [hep-ph]
37 T. Daylan, D. P. Finkbeiner, D. Hooper, T. Linden, S. K. N. Portillo, N. L. Rodd, and T. R. Slatyer, The characterization of the gamma-ray signal from the central Milky way: A compelling case for annihilating dark matter, arXiv: 1402.6703 [astro-ph.HE]
38 D. Hooper, N. Weiner, and W. Xue, Dark forces and light dark matter, Phys. Rev. D 86, 056009 (2012), arXiv: 1206.2929 [hep-ph]
https://doi.org/10.1103/PhysRevD.86.056009
39 J. Liu, N. Weiner, and W. Xue, Signals of a light dark force in the galactic center, J. High Energy Phys.1508, 050 (2015), arXiv: 1412.1485 [hep-ph]
40 D. Hooper, P. Blasi, and P. D. Serpico, Pulsars as the sources of high energy cosmic ray positrons, J. Cosmol. Astropart. Phys. 0901, 025 (2009), arXiv: 0810.1527 [astro-ph]
41 M. Endo, K. Hamaguchi, and G. Mishima, Constraints on hidden photon models from electron g-2 and hydrogen spectroscopy, Phys. Rev. D 86, 095029 (2012), arXiv: 1209.2558 [hep-ph]
https://doi.org/10.1103/PhysRevD.86.095029
42 J. P. Lees, (BaBar Collaboration), Search for a dark photon in e+e– collisions at BaBar, Phys. Rev. Lett.113(20), 201801 (2014), arXiv: 1406.2980 [hep-ex]
https://doi.org/10.1103/PhysRevLett.113.201801
43 B. Aubert, (BaBar Collaboration), Search for Dimuon decays of a light scalar boson in radiative transitions upsilon — gamma A0, Phys. Rev. Lett. 103, 081803 (2009), arXiv: 0905.4539 [hep-ex]
https://doi.org/10.1103/PhysRevLett.103.081803
44 D. Babusci, (KLOE-2 Collaboration), Limit on the production of a light vector gauge boson in phi meson decays with the KLOE detector, Phys. Lett. B 720, 111 (2013), arXiv: 1210.3927 [hep-ex]
https://doi.org/10.1016/j.physletb.2013.01.067
45 D. Babusci, (KLOE-2 Collaboration), Search for light vector boson production in e+e– →μ+μ–γinteractions with the KLOE experiment, Phys. Lett. B 736, 459 (2014), arXiv: 1404.7772 [hep-ex]
https://doi.org/10.1016/j.physletb.2014.08.005
46 P. Adlarson, (WASA-at-COSY Collaboration), Search for a dark photon in the π0 →e+e–γdecay, Phys. Lett. B726, 187 (2013), arXiv: 1304.0671 [hep-ex]
https://doi.org/10.1016/j.physletb.2013.08.055
47 G. Agakishiev, (HADES Collaboration), Searching a dark photon with HADES, Phys. Lett. B731, 265 (2014), arXiv: 1311.0216 [hep-ex]
https://doi.org/10.1016/j.physletb.2014.02.035
48 H. Merkel, , Search at the Mainz Microtron for light massive gauge bosons relevant for the muon g-2 anomaly, Phys. Rev. Lett.112(22), 221802 (2014), arXiv: 1404.5502 [hep-ex]
https://doi.org/10.1103/PhysRevLett.112.221802
49 S. Abrahamyan, (APEX Collaboration), Search for a new gauge boson in electron-nucleus fixed-target scattering by the APEX experiment, Phys. Rev. Lett.107, 191804 (2011), arXiv: 1108.2750 [hep-ex]
https://doi.org/10.1103/PhysRevLett.107.191804
50 A. Adare, (PHENIX Collaboration), Search for dark photons from neutral meson decays in p+p and d+Au collisions at NNS=200 GeV, Phys. Rev. C 91(3), 031901 (2015), arXiv: 1409.0851 [nucl-ex]
https://doi.org/10.1103/PhysRevC.91.031901
51 E. Goudzovski (NA48/2 Collaboration), Search for the dark photon in π0 decays by the NA48/2 experiment at CERN, EPJ Web Conf. 96, 01017 (2015), arXiv: 1412.8053 [hep-ex]
52 E. M. Riordan, , A search for short lived axions in an electron beam dump experiment, Phys. Rev. Lett.59, 755 (1987)
https://doi.org/10.1103/PhysRevLett.59.755
53 A. Bross, M. Crisler, S. H. Pordes, J. Volk, S. Errede, and J. Wrbanek, A search for shortlived particles produced in an electron beam dump, Phys. Rev. Lett.67, 2942 (1991)
https://doi.org/10.1103/PhysRevLett.67.2942
54 S. Andreas, C. Niebuhr, and A. Ringwald, New limits on hidden photons from past electron beam dumps, Phys. Rev. D 86, 095019 (2012), arXiv: 1209.6083 [hep-ph]
https://doi.org/10.1103/PhysRevD.86.095019
55 G. Eigen (BaBar Collaboration), Direct searches for new physics particles at BABAR,J. Phys. Conf. Ser.631(1), 012034 (2015), arXiv: 1503.02860 [hep-ex]
56 A. Soffer, Constraints on dark forces from the B factories and low-energy experiments, arXiv: 1409.5263 [hep-ex]
57 A. Soffer, Searches for light scalars, pseudoscalars, and gauge bosons, arXiv: 1507.02330 [hep-ex]
58 M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80, 095002 (2009), arXiv: 0811.1030 [hep-ph]
https://doi.org/10.1103/PhysRevD.80.095002
59 J. D. Bjorken, R. Essig, P. Schuster, and N. Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev. D80, 075018 (2009), arXiv: 0906.0580 [hep-ph]
https://doi.org/10.1103/PhysRevD.80.075018
60 R. Essig, P. Schuster, N. Toro, and B. Wojtsekhowski, An electron fixed target experiment to search for a new vector boson A' decaying to e+e–, J. High Energy Phys.1102, 009 (2011), arXiv: 1001.2557 [hep-ph]
61 J. Balewski, J. Bernauer, W. Bertozzi, J. Bessuille, B. Buck, , DarkLight: A search for dark forces at the Jefferson laboratory free-electron laser facility, arXiv: 1307.4432
62 J. Blumlein and J. Brunner, New exclusion limits for dark gauge forces from beam-dump data, Phys. Lett. B701, 155 (2011), arXiv: 1104.2747 [hep-ex]
https://doi.org/10.1016/j.physletb.2011.05.046
63 J. Blmlein and J. Brunner, New exclusion limits on dark gauge forces from proton Bremsstrahlung in beam-dump data, Phys. Lett. B731, 320 (2014), arXiv: 1311.3870 [hep-ph]
https://doi.org/10.1016/j.physletb.2014.02.029
64 B. Batell, M. Pospelov, and A. Ritz, Exploring portals to a hidden sector through fixed targets, Phys. Rev. D80, 095024 (2009), arXiv: 0906.5614 [hep-ph]
https://doi.org/10.1103/PhysRevD.80.095024
65 R. Essig, R. Harnik, J. Kaplan, and N. Toro, Discovering new light states at neutrino experiments, Phys. Rev. D 82, 113008 (2010), arXiv: 1008.0636 [hep-ph]
https://doi.org/10.1103/PhysRevD.82.113008
66 D. Curtin, R. Essig, S. Gori, and J. Shelton, Illuminating dark photons with high-energy colliders, J. High Energy Phys. 1502, 157 (2015), arXiv: 1412.0018 [hep-ph]
https://doi.org/10.1007/JHEP02(2015)157
67 C. Cheung, J. T. Ruderman, L. T. Wang, and I. Yavin, Lepton jets in (supersymmetric) electroweak processes, J. High Energy Phys. 1004, 116 (2010), arXiv: 0909.0290 [hep-ph]
https://doi.org/10.1007/JHEP04(2010)116
68 Y. Bai and Z. Han, Measuring the dark force at the LHC, Phys. Rev. Lett. 103, 051801 (2009), arXiv: 0902.0006 [hep-ph]
https://doi.org/10.1103/PhysRevLett.103.051801
69 A. Gupta, R. Primulando and P. Saraswat, A new probe of dark sector dynamics at the LHC, J. High Energy Phys. 1509, 079 (2015), arXiv: 1504.01385 [hep-ph]
70 S. Chatrchyan, (CMS Collaboration), Search for light resonances decaying into pairs of muons as a signal of new physics, J. High Energy Phys. 1107, 098 (2011), arXiv: 1106.2375 [hep-ex]
71 G. Aad, (ATLAS Collaboration), Search for long-lived neutral particles decaying into lepton jets in proton-proton collisions at s= 8 TeV with the ATLAS detector, J. High Energy Phys. 1411, 088 (2014), arXiv: 1409.0746 [hep-ex]
72 G. Aad, (ATLAS Collaboration), Search for new light gauge bosons in Higgs boson decays to four-lepton _nal states in pp collisions at s= 8 TeV with the ATLAS detector at the LHC, arXiv: 1505.07645 [hep-ex]
73 V. M. Abazov, (D0 Collaboration), Search for dark photons from supersymmetric hidden valleys, Phys. Rev. Lett. 103, 081802 (2009), arXiv: 0905.1478 [hep-ex]
https://doi.org/10.1103/PhysRevLett.103.081802
74 S. Biswas, E. Gabrielli, M. Heikinheimo, and B. Mele, Higgs-boson production in association with a dark photon in e+e– collisions, J. High Energy Phys. 1506 (2015) 102, arXiv: 1503.05836 [hep-ph]
https://doi.org/10.1007/JHEP06(2015)102
75 M. J. Strassler and K. M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651, 374 (2007), arXiv: hep-ph/0604261
https://doi.org/10.1016/j.physletb.2007.06.055
76 M. J. Strassler, Possible effects of a hidden valley on supersymmetric phenomenology, arXiv: hep-ph/0607160
77 T. Han, Z. Si, K. M. Zurek, and M. J. Strassler, Phenomenology of hidden valleys at hadron colliders, J. High Energy Phys. 0807, 008 (2008), arXiv: 0712.2041 [hep-ph]
78 P. Fayet, U-boson detectability, and light dark matter, arXiv: hep-ph/0607094
79 S.-H. Zhu, U-boson at BESIII, Phys. Rev. D 75, 115004 (2007), arXiv: hep-ph/0701001
https://doi.org/10.1103/PhysRevD.75.115004
80 R. Essig, J. Mardon, M. Papucci, T. Volansky, and Y. M. Zhong, Constraining light dark matter with low-energy e+e– colliders, J. High Energy Phys. 1311, 167 (2013), arXiv:1309.5084 [hep-ph]
https://doi.org/10.1007/JHEP11(2013)167
81 F. Archilli, (KLOE-2 Collaboration), Search for a vector gauge boson in phi meson decays with the KLOE detector, Phys. Lett. B 706, 251 (2012), arXiv: 1110.0411 [hep-ex]
https://doi.org/10.1016/j.physletb.2011.11.033
82 A. Anastasi, D. Babusci, G. Bencivenni, M. Berlowski, C. Bloise, , Limit on the production of a low-mass vector boson in e+e–→Uγ, U →e+e– with the KLOE experiment, Phys. Lett. B 750, 633 (2015), arXiv: 1509.00740 [hep-ex]
83 J. P. Lees, (BaBar Collaboration), Search for di-muon decays of a low-mass Higgs boson in radiative decays of the (1S), Phys. Rev. D 87(3), 031102 (2013) [Phys. Rev. D 87(5), 059903 (2013)], arXiv: 1210.0287 [hep-ex]
84 B. Aubert, (BaBar Collaboration), Search for a low-mass Higgs boson in Y(3S) → gamma A0, A0 → tau+ tau– at BABAR, Phys. Rev. Lett. 103, 181801 (2009), arXiv: 0906.2219 [hep-ex]
https://doi.org/10.1103/PhysRevLett.103.181801
85 J. P. Lees, (BaBar Collaboration), Search for a low-mass scalar Higgs boson decaying to a tau pair in single-photon decays of ϒ(1S), Phys. Rev. D 88(7), 071102 (2013), arXiv: 1210.5669 [hep-ex]
https://doi.org/10.1103/PhysRevD.88.071102
86 B. Aubert, (BaBar Collaboration), Search for invisible decays of a light scalar in radiative transitions υ3S →γA0, arXiv: 0808.0017 [hep-ex]
87 P. del Amo Sanchez, (BaBar Collaboration), Search for production of invisible final states in single-photon decays of ϒ(1S), Phys. Rev. Lett.107, 021804 (2011), arXiv: 1007.4646 [hep-ex]
https://doi.org/10.1103/PhysRevLett.107.021804
88 W. Love, (CLEO Collaboration), Search for very light CP-odd Higgs boson in radiative decays of Upsilon(S-1), Phys. Rev. Lett. 101 (2008) 151802, arXiv: 0807.1427 [hep-ex]
https://doi.org/10.1103/PhysRevLett.101.151802
89 B. Aubert, (BaBar Collaboration), Search for a narrow resonance in e+e– to four lepton final states, arXiv: 0908.2821 [hep-ex]
90 J. P. Lees, (BaBar Collaboration), Search for low-mass dark-sector Higgs bosons, Phys. Rev. Lett. 108, 211801 (2012), arXiv: 1202.1313 [hep-ex]
https://doi.org/10.1103/PhysRevLett.108.211801
91 I. Jaegle (Belle Collaboration), Search for the dark photon and the dark Higgs boson at Belle, Phys. Rev. Lett.114(21), 211801 (2015), arXiv: 1502.00084 [hep-ex]
92 M. Ablikim, (BESIII Collaboration), Search for a light Higgs-like boson A0 in J/ψradiative decays,Phys. Rev. D85, 092012 (2012), arXiv: 1111.2112 [hep-ex]
https://doi.org/10.1103/PhysRevD.85.092012
93 M. Ablikim, (BESIII Collaboration), Search for η and η′ invisible decays in J/ψ→φη and φη′, Phys. Rev. D87(1), 012009 (2013), arXiv: 1209.2469 [hep-ex]
https://doi.org/10.1103/PhysRevD.87.012009
94 H.-B. Li and T. Luo, Probing dark force at BES-III/BEPCII, Phys. Lett. B 686, 249 (2010), arXiv: 0911.2067 [hep-ph]
https://doi.org/10.1016/j.physletb.2010.02.059
95 V. Prasad, H. Li, and X. Lou, Search for low-mass Higgs and dark photons at BESIII, arXiv: 1508.07659 [hep-ex]
96 P. F. Yin and S. H. Zhu, Detecting light long-lived particle produced by cosmic ray, Phys. Lett. B 685, 128 (2010), arXiv: 0911.3338 [hep-ph]
https://doi.org/10.1016/j.physletb.2010.01.067
97 S. H. Zhu, V-particle again? Int. J. Mod. Phys. D 20, 1399 (2011)
https://doi.org/10.1142/S021827181101958X
98 B. Batell, M. Pospelov, A. Ritz and Y. Shang, Solar gamma rays powered by secluded dark matter, Phys. Rev. D 81, 075004 (2010), arXiv: 0910.1567 [hep-ph]
https://doi.org/10.1103/PhysRevD.81.075004
99 P. Schuster, N. Toro, N. Weiner and I. Yavin, High energy electron signals from dark matter annihilation in the Sun, Phys. Rev. D82, 115012 (2010), arXiv: 0910.1839 [hep-ph]
https://doi.org/10.1103/PhysRevD.82.115012
100 P. Meade, S. Nussinov, M. Papucci and T. Volansky, Searches for long lived neutral particles, J. High Energy Phys. 1006, 029 (2010), arXiv: 0910.4160 [hep-ph]]
101 S. H. Zhu, Dark matter signature from the sky and at colliders, PoS ICHEP2010, 451 (2010), arXiv: 1008.3963 [hep-ph]
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed