Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (6): 117406   https://doi.org/10.1007/s11467-016-0578-1
  本期目录
Superconductivity well above room temperature in compressed MgH6
R. Szcz¸eśniak1,A. P. Durajski2,*()
1. Institute of Physics, Jan Długosz University, Ave. Armii Krajowej 13/15, 42-200 Cz¸estochowa, Poland
2. Institute of Physics, Cz¸estochowa University of Technology, Ave. Armii Krajowej 19, 42-200 Cz¸estochowa, Poland
 全文: PDF(424 KB)  
Abstract

It has been suggested that hydrogen-rich systems at high pressure may exhibit notably high super-conducting transition temperatures. One of the more interesting theoretical predictions was that hydrogen sulfide can be metallized and the high-temperature superconducting state can be induced. A record critical temperature (203 K) was later confirmed for H3S in an experiment. In this paper, we investigated, within the framework of the Eliashberg formalism, the properties of compressed MgH6, which is expected to be a very good candidate for room-temperature superconductivity. This applies particularly to the pressure range from 300 to 400 GPa, where the transition temperature is close to 400 K. Moreover, the estimated thermodynamic properties and the resulting dimensionless ratios exceed the predictions of the Bardeen–Cooper–Schrieffer theory. This behavior is attributed to the strong electron–phonon coupling and retardation effects existing in hydrogen-dominated materials under high pressure.

Key wordssuperconductors    hydrogen-rich compounds    high pressure    thermodynamic properties
收稿日期: 2016-03-08      出版日期: 2016-05-30
Corresponding Author(s): A. P. Durajski   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(6): 117406.
R. Szcz¸eśniak, A. P. Durajski. Superconductivity well above room temperature in compressed MgH6. Front. Phys. , 2016, 11(6): 117406.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0578-1
https://academic.hep.com.cn/fop/CN/Y2016/V11/I6/117406
1 N. W. Ashcroft, Metallic hydrogen: A high-temperature superconductor? Phys. Rev. Lett. 21(26), 1748 (1968)
https://doi.org/10.1103PhysRevLett.21.1748
2 N. W. Ashcroft, Hydrogen dominant metallic alloys: High temperature superconductors? Phys. Rev. Lett. 92(18), 187002 (2004)
https://doi.org/10.1103PhysRevLett.92.187002
3 Y. Li, J. Hao, H. Liu, Y. Li, and Y. Ma, The metallization and superconductivity of dense hydrogen sulfide, J. Chem. Phys. 140(17), 174712 (2014)
https://doi.org/10.10631.4874158
4 A. P. Durajski, R. Szczęśniak, and L. Pietronero, High-temperature study of superconducting hydrogen and deuterium sulfide, Annalen der Physik, (Berlin), 528, 358 (2016)
5 D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity, Sci. Rep. 4, 6968 (2014)
https://doi.org/10.1038srep06968
6 R. Akashi, M. Kawamura, S. Tsuneyuki, Y. Nomura, and R. Arita, First-principles study of the pressure and crystal-structure dependences of the superconducting transition temperature in compressed sulfur hydrides, Phys. Rev. B 91(22), 224513 (2015)
https://doi.org/10.1103PhysRevB.91.224513
7 A. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature 525(7567), 73 (2015)
https://doi.org/10.1038nature14964
8 M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. Eremets, A. Drozdov, I. Troyan, N. Hirao, and Y. Ohishi, Crystal structure of 200 K superconducting phase of sulfur hydride system, arXiv: 1509.03156 (2015)
9 H. Wang, J. S. Tse, K. Tanaka, T. Iitaka, and Y. Ma, Superconductive sodalite-like clathrate calcium hydride at high pressures, Proc. Natl. Acad. Sci. USA 109(17), 6463 (2012)
https://doi.org/10.1073pnas.1118168109
10 X. Feng, J. Zhang, G. Gao, H. Liu, and H. Wang, Compressed sodalite-like MgH6 as a potential high-temperature superconductor, RSC Adv. 5, 59292 (2015)
https://doi.org/10.1039C5RA11459D
11 G. Kresse and J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.10160927-0256(96)00008-0
12 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103PhysRevLett.77.3865
13 G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
https://doi.org/10.1103PhysRevB.59.1758
14 G. M. Eliashberg, Interactions between electrons and lattice vibrations in a superconductor, Sov. Phys. JETP 11, 696 (1960)
15 J. P. Carbotte, Properties of boson-exchange superconductors, Rev. Mod. Phys. 62(4), 1027 (1990)
https://doi.org/10.1103RevModPhys.62.1027
16 Szczȩśniak and T. P. Zemła, On the high-pressure superconducting phase in platinum hydride, Supercond. Sci. Technol. 28(8), 085018 (2015)
https://doi.org/10.10880953-2048288085018
17 R. Szczęśniak, A. P. Durajski, and P. W. Pach, On the thermodynamic properties of the Rb3C60 superconductor, Cryogenics 61, 38 (2014)
https://doi.org/10.1016j.cryogenics.2014.02.004
18 R. Szczęśniak, A. P. Durajski, and L. Herok, Theoretical description of the SrPt3P superconductor in the strong-coupling limit, Phys. Scr. 89(12), 125701 (2014)
https://doi.org/10.10880031-89498912125701
19 P. B. Allen and R. C. Dynes, Transition temperature of strong-coupled superconductors reanalyzed, Phys. Rev. B 905, 1975 (1975)
https://doi.org/10.1103physrevb.12.905
20 W. L. McMillan, Transition temperature of strong-coupled superconductors, Phys. Rev. 167(2), 331 (1968)
https://doi.org/10.1103PhysRev.167.331
21 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Microscopic theory of superconductivity, Phys. Rev. 106(1), 162 (1957)
https://doi.org/10.1103PhysRev.106.162
22 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity, Phys. Rev. 108(5), 1175 (1957)
https://doi.org/10.1103PhysRev.108.1175
23 A. P. Durajski, R. Szczęśniak, and Y. Li, Non-BCS thermodynamic properties of H2SH2S superconductor, Physica C 515, 1 (2015)
https://doi.org/10.1016j.physc.2015.04.005
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed