1. University of Michigan–Shanghai Jiao Tong University Joint Institute, 800 Dongchuan Rd., Shanghai 200240, China 2. Faculty of Fundamental Problems of Technology, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland 3. Faculty of Computer Science and Management, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
A framework for analytical studies of superconducting systems is presented and illustrated. The formalism, based on the conformal transformation of momentum space, allows one to study the effects of both the dispersion relation and the structure of the pairing interaction in two-dimensional anisotropic high-Tc superconductors. In this method, the number of employed degrees of freedom coincides with the dimension of the momentum space, which is different compared to that in the standard Van Hove scenario with a single degree of freedom. A new function, the kernel of the density of states, is defined and its relation to the standard density of states is explained. The versatility of the method is illustrated by analyzing coexistence and competition between spin-singlet and spin-triplet order parameters in superconducting systems with a tight-binding-type dispersion relation and an anisotropic pairing potential. Phase diagrams of stable superconducting states in the coordinates η (the ratio of hopping parameters) and η (the carrier concentration) are presented and discussed. Moreover, the role of attractive and repulsive on-site interactions for the stability of the s-wave order parameter is explained.
. [J]. Frontiers of Physics, 2016, 11(6): 117407.
Mateusz Krzyzosiak, Ryszard Gonczarek, Adam Gonczarek, Lucjan Jacak. Applications of the conformal transformation method in studies of composed superconducting systems. Front. Phys. , 2016, 11(6): 117407.
P. Monthoux and G. G. Lonzarich, p-wave and d-wave superconductivity in quasi-two-dimensional metals, Phys. Rev. B 59(22), 14598 (1999)
https://doi.org/10.1103/PhysRevB.59.14598
2
P. Monthoux and G. G. Lonzarich, Magnetically mediated superconductivity in quasi-two and three dimensions, Phys. Rev. B 63(5), 054529 (2001)
https://doi.org/10.1103/PhysRevB.63.054529
3
P. Monthoux and G. G. Lonzarich, Magnetically mediated superconductivity: Crossover from cubic to tetragonal lattice, Phys. Rev. B 66(22), 224504 (2002)
https://doi.org/10.1103/PhysRevB.66.224504
4
A. Nazarenko and E. Dagotto, Possible phononic mechanism for dx2y2 superconductivity in the presence of short-range antiferromagnetic correlations, Phys. Rev. B 53(6), R2987 (1996)
https://doi.org/10.1103/PhysRevB.53.R2987
5
D. Y. Xing, M. Liu, Y. G. Wang, and J. Dong, Analytic approach to the antiferromagnetic van Hove singularity model for high-Tc superconductors, Phys. Rev. B 60(13), 9775 (1999)
https://doi.org/10.1103/PhysRevB.60.9775
6
M. R. Norman and C. Pépin, The electronic nature of high temperature cuprate superconductors, Rep. Prog. Phys. 66(10), 1547 (2003)
https://doi.org/10.1088/0034-4885/66/10/R01
7
R. Gonczarek, M. G ladysiewicz-Kudrawiec, The Van Hove Scenario in high-Tcsuperconductivity, Wrocław University of Technology Press, Wrocław, 2004 (in Polish)
8
R. Gonczarek and M. Krzyzosiak, Conformal transformation method and symmetry aspects of the group C4vin a model of high-Tc superconductors with anisotropic gap, Physica C 426(431), 278 (2005)
https://doi.org/10.1016/j.physc.2005.01.023
9
R. Gonczarek, L. Jacak, M. Krzyzosiak, and A. Gonczarek, Competition mechanism between singlet and triplet superconductivity in the tight-binding model with anisotropic attractive potential, Eur. Phys. J. B 49(2), 171 (2006)
https://doi.org/10.1140/epjb/e2006-00047-7
10
R. Gonczarek, M. Krzyzosiak, L. Jacak, and A. Gonczarek, Coexistence of spin-singlet s- and d-wave and spin-triplet p-wave order parameters in anisotropic superconductors, phys. stat. sol. (b) 244, 3559 (2007)
11
R. Gonczarek, M. Krzyzosiak, and A. Gonczarek, Islands of stability of the d-wave order parameter in s-wave anisotropic superconductors, Eur. Phys. J. B 61(3), 299 (2008)
https://doi.org/10.1140/epjb/e2008-00072-6
12
M. Krzyzosiak, R. Gonczarek, A. Gonczarek, and L. Jacak, Interplay between spin-singlet and spin-triplet order parameters in a model of an anisotropic superconductor with cuprate planes, J. Phys. Conf. Ser.152, 012057 (2009)
https://doi.org/10.1088/1742-6596/152/1/012057
13
R. Szczęśniak and A. P. Durajski, The characterization of high-pressure superconducting state in Si2H6 compound: the strong-coupling description, J. Phys. Chem. Solids74(4), 641 (2013)
https://doi.org/10.1016/j.jpcs.2012.12.024
14
R. Szczęśniak, SDW antiferromagnetic phase in the two-dimensional Hubbard model: Eliashberg approach, Phys. Lett. A 373(4), 473 (2009)
https://doi.org/10.1016/j.physleta.2008.11.040
Y. A. Krotov, D. H. Lee, and A. V. Balatsky, Superconductivity of a metallic stripe embedded in an antiferromagnet, Phys. Rev. B 56(13), 8367 (1999)
https://doi.org/10.1103/PhysRevB.56.8367
17
M. Granath and H. Johannesson, One-dimensional electron liquid in an antiferromagnetic environment: Spin gap from magnetic correlations, Phys. Rev. Lett. 83(1), 199 (1999)
https://doi.org/10.1103/PhysRevLett.83.199
P. W. Anderson, The Theory of High-TcSuperconductivity in the Cuprates, Princeton University Press, 1997
22
L. D. Landau, The Theory of a Fermi Liquid, Zh. Eksp. Teor. Fiz. 80, 1058 (1956) [Sov. Phys. JETP 3, 920 (1956)]
23
L. D. Landau, Oscillations in a Fermi liquid, Zh. Eksp. Teor. Fiz. 32, 59 (1957) [Sov. Phys. JETP 5, 101(1957)]
24
M. Krzyzosiak, R. Gonczarek, A. Gonczarek, and L. Jacak, Conformal Transformation Method in Studies of High-TcSuperconductors--- Beyond the Van Hove Scenario, in: Superconductivity and Superconducting Wires, edited by D. Matteri and L. Futino, Nova Science Publishers, 2010, Ch. 5
25
R. Gonczarek, M. Krzyzosiak, and M. Mulak, Valuation of characteristic ratios for high-Tcsuperconductors with anisotropic gap in the conformal transformation method, J. Phys. A 37(18), 4899 (2004)
https://doi.org/10.1088/0305-4470/37/18/001
26
R. Gonczarek, M. Gładysiewicz, and M. Mulak, On possible formalism of anisotropic Fermi liquid and BCS-type superconductivity, Int. J. Mod. Phys. B 15(05), 491 (2001)
https://doi.org/10.1142/S0217979201004459
R. Micnas, J. Ranniger, and S. Robaszkiewicz, Superconductivity in narrow-band systems with local nonretarded attractive interactions, Rev. Mod. Phys. 62(1), 113 (1990)
https://doi.org/10.1103/RevModPhys.62.113
29
E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen, and O. K. Andersen, Band-structure trend in hole-doped cuprates and correlation with Trmc max, Phys. Rev. Lett. 87(4), 047003 (2001)
https://doi.org/10.1103/PhysRevLett.87.047003
30
O. K. Andersen, A. I. Liechtenstein, O. Jepsen, and F. Paulsen, LDA energy bands, low-energy hamiltonians, t’, t’’, t(k), and J, J. Phys. Chem. Solids 56(12), 1573 (1995)
https://doi.org/10.1016/0022-3697(95)00269-3
31
O. K. Andersen, S. Y. Savrasov, O. Jepsen, and A. I. Liechtenstein, Out-of-plane instability and electron-phonon contribution to s- and d-wave pairing in high-temperature superconductors; LDA linear-response calculation for doped CaCuO2 and a generic tight-binding model J. Low Temp. Phys. 105(3-4), 285 (1996)
https://doi.org/10.1007/BF00768402
32
R. Gonczarek, M. G. ladysiewicz, and M. Mulak, Equilibrium states and thermodynamical properties of d-wave paired HTSC in the tightbinding model, phys. stat. sol. (b) 233, 351 (2002)
33
M. M. Maśka, M. Mierzejewski, B. Andrzejewski, M. L. Foo, R. J. Cava, and T. Klimczuk, Possible singlet-to-triplet pairing transition in NaxCoO2-yH2O, Phys. Rev. B 70, 144516 (2004)
https://doi.org/10.1103/PhysRevB.70.144516
34
J. Bouvier and J. Bok, The Gap Symmetry and Fluctuations in High TcSuperconductors, Eds. J. Bok, G. Deutscher, D. Pavuna, and S. Wolf, New York: Plenum Press, 1998, p. 37
35
R. S. Markiewicz, A survey of the Van Hove scenario for high-Tc superconductivity with special emphasis on pseudogaps and striped phases, J. Phys. Chem. Solids 58(8), 1179 (1997)
https://doi.org/10.1016/S0022-3697(97)00025-5
36
H. Q. Lin and J. E. Hirsch, Two-dimensional Hubbard model with nearest- and next-nearest-neighbor hopping, Phys. Rev. B 35(7), 3359 (1987)
https://doi.org/10.1103/PhysRevB.35.3359
Q. Yuan and P. Thalmeier, BCS theory for s+g-wave superconductivity in borocarbides Y(Lu)Ni2B2C, Phys. Rev. B 68(17), 174501 (2003)
https://doi.org/10.1103/PhysRevB.68.174501
J. González, Microscopic description of d-wave superconductivity by Van Hove nesting in the Hubbard model, Phys. Rev. B 63(2), 024502 (2000)
https://doi.org/10.1103/PhysRevB.63.024502
R. Gonczarek and M. Krzyzosiak, On possibility of realization of d- or p-wave symmetry states in anisotropic superconductors, Acta Phys. Pol. A 109(4-5), 493 (2006)
https://doi.org/10.12693/APhysPolA.109.493
44
R. Gonczarek and M. Krzyzosiak, On a model of superconductivity realized in the metallic phase of strongly correlated electrons revealing a first-order phase transition, Int. J. Mod. Phys. B 17(30), 5683 (2003)
https://doi.org/10.1142/S0217979203023343
45
R. Gonczarek and M. Krzyzosiak, Critical parameters in the superconducting singular Fermi liquid model, Physica C 445-448, 158 (2006)
https://doi.org/10.1016/j.physc.2006.03.105
46
A. P. Durajski, The anisotropic evolution of the energy gap in Bi2212 superconductor, Front. Phys. 11, 117406 (2016) (in press)
47
C. C. Tsuei, D. M. Newns, C. C. Chi, and P. C. Pattnaik, Anomalous isotope effect and Van Hove singularity in superconducting Cu oxides, Phys. Rev. Lett. 65(21), 2724 (1990)
https://doi.org/10.1103/PhysRevLett.65.2724
E. Dagotto, A. Nazarenko, and M. Boninsegni, Flat quasiparticle dispersion in the 2D t-Jmodel, Phys. Rev. Lett. 73(5), 728 (1994)
https://doi.org/10.1103/PhysRevLett.73.728
E. Dagotto, A. Nazarenko, and A. Moreo, Antiferromagnetic and van Hove scenarios for the cuprates: Taking the best of both worlds, Phys. Rev. Lett. 74(2), 310 (1995)
https://doi.org/10.1103/PhysRevLett.74.310
52
J. M. Getino, M. de Llano, and H. Rubio, Properties of the gap energy in the van Hove scenario of high-temperature superconductivity, Phys. Rev. B 48(1), 597 (1993)
https://doi.org/10.1103/PhysRevB.48.597
53
R. S. Markiewicz, Van Hove excitons and high-Tcsuperconductivity (VI): Properties of the exitations, Physica C 168(1-2), 195 (1990)
https://doi.org/10.1016/0921-4534(90)90124-W
R. S. Markiewicz, C. Kusko, and V. Kidambi, Pinned Balseiro-Falicov model of tunneling and photoemission in the cuprates, Phys. Rev. B 60(1), 627 (1999)
https://doi.org/10.1103/PhysRevB.60.627
56
H. H. Fertwell, A. Kaminski, J. Mesot, J. C. Campuzano, M. R. Norman, M. Randeria, T. Sato, R. Gatt, T. Takahashi and K. Kadowaki, Fermi surface of Bi2Sr2CaCu2O8, Phys. Rev. Lett. 84(19), 4449 (2000)
https://doi.org/10.1103/PhysRevLett.84.4449
57
S. V. Borisenko, M. S. Golden, S. Legner, T. Pichler, C. Dürr, M. Knupfer, J. Fink, G. Yang, S. Abell, and H. Berger, Joys and pitfalls of Fermi surface mapping in Bi2Sr2CaCu2O8+δ using angle resolved photoemission, Phys. Rev. Lett. 84(19), 4453 (2000)
https://doi.org/10.1103/PhysRevLett.84.4453
58
K. Kuboki, Effect of band structure on the symmetry of superconducting states, J. Phys. Soc. Jpn. 70(9), 2698 (2001)
https://doi.org/10.1143/JPSJ.70.2698
59
R. Gonczarek and M. Krzyzosiak, Some universal relations between the gap and thermodynamic functions plausible for various models of superconductors, phys. stat. sol. (b) 238, 29 (2003)
60
R. Gonczarek and M. Mulak, Enhancement of critical temperature of superconductors implied by the local fluctuation of EDOS, Phys. Lett. A 251(4), 262 (1999)
https://doi.org/10.1016/S0375-9601(98)00905-0