Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (4): 114209   https://doi.org/10.1007/s11467-016-0581-6
  本期目录
The role of microwaves in the enhancement of laser-induced plasma emission
Ali Khumaeni1,*(),Katsuaki Akaoka2,Masabumi Miyabe2,Ikuo Wakaida2
1. Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Tembalang, Semarang 50275, Indonesia
2. Fuel Debris Analysis Group, Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken 311-1195, Japan
 全文: PDF(713 KB)  
Abstract

We studied experimentally the effect of microwaves (MWs) on the enhancement of plasma emission achieved by laser-induced breakdown spectroscopy (LIBS). A laser plasma was generated on a calcium oxide pellet by a Nd:YAG laser (5 mJ, 532 nm, 8 ns) in reduced-pressure argon surrounding gas. A MW radiation (400 W) was injected into the laser plasma via a loop antenna placed immediately above the laser plasma to enhance the plasma emission. The results confirmed that when the electromagnetic field was introduced into the laser plasma region by the MWs, the lifetime of the plasma was extended from 50 to 500 s, similar to the MW duration. Furthermore, the plasma temperature and electron density increased to approximately 10900 K and 1.5×1018 cm−3, respectively and the size of the plasma emission was extended to 15 mm in diameter. As a result, the emission intensity of Ca lines obtained using LIBS with MWs was enhanced by approximately 200 times compared to the case of LIBS without MWs.

Key wordslaser-induced breakdown spectroscopy    LIBS    microwave-assisted laser-induced breakdown spectroscopy    MA-LIBS    enhancement of laser plasma emission
收稿日期: 2015-11-13      出版日期: 2016-06-28
Corresponding Author(s): Ali Khumaeni   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(4): 114209.
Ali Khumaeni,Katsuaki Akaoka,Masabumi Miyabe,Ikuo Wakaida. The role of microwaves in the enhancement of laser-induced plasma emission. Front. Phys. , 2016, 11(4): 114209.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0581-6
https://academic.hep.com.cn/fop/CN/Y2016/V11/I4/114209
1 D. A. Cremers and L. J. Radziemski, Handbook of Laser- Induced Breakdown Spectroscopy, Chichester: Wiley, 2006
https://doi.org/10.1002/0470093013
2 V. Miziolek, Palleschi, and I. Schechter (<Eds/>.), Laser Induced Breakdown Spectroscopy, Cambridge: Cambridge University Press, 2006
3 Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)
https://doi.org/10.1007/s11467-013-0410-0
4 R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. Mc- Nesby, and P. D. French, Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments, Spectrochim. Acta B 56(6), 777 (2001)
https://doi.org/10.1016/S0584-8547(01)00229-4
5 M. Z. Martin, N. Labbé, N. André, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications, Spectrochim. Acta B 62(12), 1426 (2007)
https://doi.org/10.1016/j.sab.2007.10.046
6 R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, Laser-induced breakdown spectrometry-applications for production control and quality assurance in the steel industry, Spectrochim. Acta B 56(6), 637 (2001)
https://doi.org/10.1016/S0584-8547(01)00214-2
7 M. O. Vieitez, J. Hedberg, O. Launila, and L. Berg, Elemental analysis of steel scrap metals and minerals by laser-induced breakdown spectroscopy, Spectrochim. Acta B 60(7-8), 920 (2005)
https://doi.org/10.1016/j.sab.2005.05.024
8 Z. B. Ni, X. L. Chen, H. B. Fu, J. G. Wang, and F. Z. Dong, Study on quantitative analysis of slag based on spectral normalization of laser-induced plasma image, Front. Phys. 9(4), 439 (2014)
https://doi.org/10.1007/s11467-014-0433-1
9 A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, and J. Wright, Remote material analysis of nuclear power station steam generator tubes by laserinduced breakdown spectroscopy, Spectrochim. Acta B 56(6), 821 (2001)
https://doi.org/10.1016/S0584-8547(01)00232-4
10 M. F. Bustamante, C. A. Rinaldi, and J. C. Ferrero, Laser induced breakdown spectroscopy characterization of Ca in a soil depth profile, Spectrochim. Acta B 57(2), 303 (2002)
https://doi.org/10.1016/S0584-8547(01)00394-9
11 P. Maravelaki-Kalaitzaki, D. Anglos, V. Kilikoglou, and V. Zafiropulos, Compositional characterization of encrustation on marble with laser induced breakdown spectroscopy, Spectrochim. Acta B 56(6), 887 (2001)
https://doi.org/10.1016/S0584-8547(01)00226-9
12 D. Body and B. L. Chadwick, Simultaneous elemental analysis system using laser induced breakdown spectroscopy, Rev. Sci. Instrum. 72(3), 1625 (2001)
https://doi.org/10.1063/1.1338486
13 J. Uebbing, J. Brust, W. Sdorra, F. Leis, and K. Niemax, Reheating of a laser-produced plasma by a second pulse laser, Appl. Spectrosc. 45(9), 1419 (1991)
https://doi.org/10.1366/0003702914335445
14 V. I. Babushok, J. L. Jr DeLucia, C. A. Gottfried, C. A. Munson, and A. W. Miziolek, Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement, Spectrochim. Acta B 61(9), 999 (2006)
https://doi.org/10.1016/j.sab.2006.09.003
15 F. F. Chen, X. J. Su, and W. D. Zhou, Effect of parameters on Si plasma emission in collinear double-pulse laserinduced breakdown spectroscopy, Front. Phys. 10(5), 104207 (2015)
https://doi.org/10.1007/s11467-015-0500-2
16 R. Sattmann, V. Sturm, and R. Noll, Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses, J. Phys. D 28(10), 2181 (1995)
https://doi.org/10.1088/0022-3727/28/10/030
17 Envimetrics, LAMPS Unit Manual, 2009
18 Y. Liu, M. Baudelet, and M. Richardson, Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics, J. Anal. At. Spectrom. 25(8), 1316 (2010)
https://doi.org/10.1039/c003304a
19 B. Kearton and Y. Mattley, Laser-induced breakdown spectroscopy: Sparking new applications, Nat. Photonics 2(9), 537 (2008)
https://doi.org/10.1038/nphoton.2008.173
20 Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laserinduced breakdown spectroscopy, Spectrochim. Acta B 73, 89 (2012)
https://doi.org/10.1016/j.sab.2012.06.041
21 Y. Ikeda, A. Moon, and M. Kaneko, Development of microwave-enhanced spark-induced breakdown spectroscopy, Appl. Opt. 49(13), C95 (2010)
https://doi.org/10.1364/AO.49.000C95
22 M. Oba, Y. Maruyama, K. Akaoka, M. Miyabe, and I. Wakaida, Double-pulse LIBS of gadolinium oxide ablated by a femto- and nano-second laser pulses, Appl. Phys. A 101(3), 545 (2010)
https://doi.org/10.1007/s00339-010-5894-7
23 http://physics.nist.gov/PhysRefData/ASD/lines_form.html
24 V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions, Pramana-J. Phys. 74(6), 983 (2010)
25 J. Zalach and St. Franke, Interative Boltzmann plot method for temperature and pressure determination in a xenon high pressure discharge lamp, J. Appl. Phys. 113, 043303 (2013)
https://doi.org/10.1063/1.4788701
26 A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale, Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples, Spectrochim. Acta B 63(7), 805 (2008)
https://doi.org/10.1016/j.sab.2008.05.002
27 S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, Electron density and temperature measurements in a laser produced carbonplasma, J. Appl. Phys. 82(5), 2140 (1997)
https://doi.org/10.1063/1.366276
28 R. W. P. McWhirter, Spectral Intensities, in: Plasma Diagnostic Techniques, edited by R. H. Huddlestone and S. L. Leonard, New York: Academic, 1965
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed