Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (6): 115206   https://doi.org/10.1007/s11467-016-0590-5
  本期目录
Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium
Hao Liu1,2,Wei Kang1,2,*(),Qi Zhang3,Yin Zhang3,Huilin Duan1,3,*(),X. T. He4,5,*()
1. HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871, China
2. College of Engineering, Peking University, Beijing 100871, China
3. Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
4. Center for Applied Physics and Technology, HEDPS, and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871, China
5. Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
 全文: PDF(2452 KB)  
Abstract

Hydrodynamic properties and structure of strong shock waves in classical dense helium are simulated using non-equilibrium molecular dynamics methods. The shock speed in the simulation reaches 100 km/s and the Mach number is over 250, which are close to the parameters of shock waves in the implosion process of inertial confinement fusion. The simulations show that the high-Mach-number shock waves in dense media have notable differences from weak shock waves or those in dilute gases. These results will provide useful information on the implosion process, especially the structure of strong shock wave front, which remains an open question in hydrodynamic simulations.

Key wordsshock structure    high Mach number    dense media
收稿日期: 2016-02-20      出版日期: 2016-06-12
Corresponding Author(s): Wei Kang,Huilin Duan,X. T. He   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(6): 115206.
Hao Liu,Wei Kang,Qi Zhang,Yin Zhang,Huilin Duan,X. T. He. Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium. Front. Phys. , 2016, 11(6): 115206.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0590-5
https://academic.hep.com.cn/fop/CN/Y2016/V11/I6/115206
1 A. R. Bell, The acceleration of cosmic rays in shock fronts- I, Mon. Not. R. Astron. Soc. 182, 147 (1978)
https://doi.org/10.1093/mnras/182.2.147
2 S. J. Schwartz, E. Henley, J. Mitchell, and V. Krasnoselskikh, Electron temperature gradient scale at collisionless shocks, Phys. Rev. Lett. 107, 215002 (2011)
https://doi.org/10.1103/PhysRevLett.107.215002
3 J. Hansen, M. Edwards, D. Froula, G. Gregori, A. Edens, and T. Ditmire, High Energy Density Laboratory Astrophysics, Chap. Laboratory Simulations of Supernova Shockwave Propagation, Springer Netherlands, Dordrecht, 2005, pp 61–67
https://doi.org/10.1007/1-4020-4162-4_8
4 M. Guidry and B. Messer, The physics and astrophysics of type Ia supernova explosions, Front. Phys. 8, 111 (2013)
https://doi.org/10.1007/s11467-013-0317-9
5 T. J. B. Collins, A. Poludnenko, A. Cunningham, and A. Frank, Shock propagation in deuterium-tritiumsaturated foam, Physics of Plasmas 12, 062705 (2005)
https://doi.org/10.1063/1.1927099
6 J. Wang, Y. Shi, L.-P. Wang, Z. Xiao, X. He, and S. Chen, Effect of shocklets on the velocity gradients in highly compressible isotropic turbulence, Physics of Fluids 23, 125103 (2011)
https://doi.org/10.1063/1.3664124
7 J. Wang, Y. Shi, L.-P. Wang, Z. Xiao, X. T. He, and S. Chen, Effect of compressibility on the small-scale structures in isotropic turbulence, Journal of Fluid Mechanics 713, 588 (2012)
https://doi.org/10.1017/jfm.2012.474
8 J. Wang, Y. Shi, L.-P. Wang, Z. Xiao, X. T. He, and S. Chen, Scaling and statistics in three-dimensional compressible turbulence, Phys. Rev. Lett. 108, 214505 (2012)
https://doi.org/10.1103/PhysRevLett.108.214505
9 D. Rotman, Shock wave effects on a turbulent flow, Physics of Fluids A: Fluid Dynamics (1989–1993) 3, 1792 (1991)
https://doi.org/10.1063/1.857960
10 T. G. Elizarova, A. A. Khokhlov, and S. Montero, Numerical simulation of shock wave structure in nitrogen, Physics of Fluids (1994–present) 19, 068102 (2007)
11 B. L. Holian and P. S. Lomdahl, Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations, Science 280, 2085 (1998)
https://doi.org/10.1126/science.280.5372.2085
12 A. B. Belonoshko, A. Rosengren, N. V. Skorodumova, S. Bastea, and B. Johansson, Shock wave propagation in dissociating low-zliquids: D2, J. Chem. Phys. 122, 124503 (2005)
https://doi.org/10.1063/1.1860554
13 K. Kadau, T. C. Germann, P. S. Lomdahl, and B. L. Holian, Atomistic simulations of shock-induced transformations and their orientation dependence in bcc fe single crystals, Phys. Rev. B 72, 064120 (2005)
https://doi.org/10.1103/PhysRevB.72.064120
14 D. W. Brenner, D. H. Robertson, M. L. Elert, and C. T. White, Detonations at nanometer resolution using molecular dynamics, Phys. Rev. Lett. 70, 2174 (1993)
https://doi.org/10.1103/PhysRevLett.70.2174
15 D. Gilbarg and D. Paolucci, The structure of shock waves in the continuum theory of fluids, Journal of Rational Mechanics and Analysis 2, 617 (1953)
16 H. W. Liepmann, R. Narasimha, and M. T. Chahine, Structure of a plane shock layer, Physics of Fluids 5, 1313 (1962)
https://doi.org/10.1063/1.1706527
17 B. L. Holian, C. W. Patterson, M. Mareschal, and E. Salomons, Modeling shock waves in an ideal gas: Going beyond the navier-stokes level, Phys. Rev. E 47, R24 (1993)
https://doi.org/10.1103/PhysRevE.47.R24
18 B. L. Holian, M. Mareschal, and R. Ravelo, Test of a new heat-flow equation for dense-fluid shock waves, J. Chem. Phys. 133, 114502 (2010)
https://doi.org/10.1063/1.3486088
19 B. L. Holian and M. Mareschal, Heat-flow equation motivated by the ideal-gas shock wave, Phys. Rev. E 82, 026707 (2010)
https://doi.org/10.1103/PhysRevE.82.026707
20 H. M. Mott-Smith, The solution of the boltzmann equation for a shock wave, Phys. Rev. 82, 885 (1951)
https://doi.org/10.1103/PhysRev.82.885
21 V. V. Zhakhovskii, K. Nishihara, and S. I. Anisimov, Shock wave structure in dense gases, Journal of Experimental and Theoretical Physics Letters 66, 99 (1997)
https://doi.org/10.1134/1.567510
22 T. Ohwada, Structure of normal shock waves: Direct numerical analysis of the boltzmann equation for hard‐sphere molecules, Physics of Fluids A: Fluid Dynamics (1989–1993) 5, 217 (1993)
https://doi.org/10.1063/1.858777
23 A.-G. Xu, G.-C. Zhang, Y.-B. Gan, F. Chen, and X.-J. Yu, Lattice boltzmann modeling and simulation of compressible flows, Front. Phys. 7, 582 (2012)
https://doi.org/10.1007/s11467-012-0269-5
24 Y. Gan, A. Xu, G. Zhang, and Y. Yang, Lattice bgk kinetic model for high-speed compressible flows: Hydrodynamic and nonequilibrium behaviors, Europhys. Lett. 103, 24003 (2013)
https://doi.org/10.1209/0295-5075/103/24003
25 C. Lin, A. Xu, G. Zhang, Y. Li, and S. Succi, Polarcoordinate lattice boltzmann modeling of compressible flows, Phys. Rev. E 89, 013307 (2014)
https://doi.org/10.1103/PhysRevE.89.013307
26 A. Xu, C. Lin, G. Zhang, and Y. Li, Multiple-relaxationtime lattice boltzmann kinetic model for combustion, Phys. Rev. E 91, 043306 (2015)
https://doi.org/10.1103/PhysRevE.91.043306
27 C. Lin, A. Xu, G. Zhang, and Y. Li, Double-distributionfunction discrete boltzmann model for combustion, Combustion and Flame 164, 137 (2016)
https://doi.org/10.1016/j.combustflame.2015.11.010
28 G. G. Comisar, Bimodal distributions and plasma shock wave structure, Physics of Fluids (1958–1988) 6, 1263 (1963)
29 C. Muckenfuss, Some aspects of shock structure according to the bimodal model, Physics of Fluids (1958–1988) 5, 1325 (1962)
30 G. A. Bird, Aspects of the structure of strong shock waves, Physics of Fluids (1958–1988) 13, 1172 (1970)
31 B. Holian, Atomistic computer simulations of shock waves, Shock Waves 5, 149 (1995)
https://doi.org/10.1007/BF01435522
32 M. Linzer and D. F. Hornig, Structure of shock fronts in argon and nitrogen, Physics of Fluids 6, 1661 (1963)
https://doi.org/10.1063/1.1711007
33 P. Harris and H. N. Presles, Reflectivity of a 5.8 kbar shock front in water, J. Chem. Phys. 74, 6864 (1981)
https://doi.org/10.1063/1.441095
34 G. R. Cowan and D. F. Hornig, The experimental determination of the thickness of a shock front in a gas, J. Chem. Phys. 18, 1008 (1950)
https://doi.org/10.1063/1.1747845
35 E. F. Greene and D. F. Hornig, The shape and thickness of shock fronts in argon, hydrogen, nitrogen, and oxygen, J. Chem. Phys. 21, 617 (1953)
https://doi.org/10.1063/1.1698978
36 V. Klimenko and A. Dremin, Detonatsiya, Chernogolovka, Akad. Nauk, Moscow, SSSR, 1978
37 W. G. Hoover, Structure of a shock-wave front in a liquid, Phys. Rev. Lett. 42, 1531 (1979)
https://doi.org/10.1103/PhysRevLett.42.1531
38 W. G. Hoover and C. G. Hoover, Shockwaves and local hydrodynamics; failure of the Navier–Stokes Equations, arXiv: 0909.2882 [physics.flu-dyn]
39 B. L. Holian, W. G. Hoover, B. Moran, and G. K. Straub, Shock-wave structure via nonequilibrium molecular dynamics and Navier–Stokes continuum mechanics, Phys. Rev. A 22, 2798 (1980)
https://doi.org/10.1103/PhysRevA.22.2798
40 E. Salomons and M. Mareschal, Usefulness of the burnett description of strong shock waves, Phys. Rev. Lett. 69, 269 (1992)
https://doi.org/10.1103/PhysRevLett.69.269
41 L. García-Colín, R. Velasco, and F. Uribe, Beyond the Navier–Stokes equations: Burnett hydrodynamics, Physics Reports 465, 149 (2008)
https://doi.org/10.1016/j.physrep.2008.04.010
42 A. V. Bobylev, M. Bisi, M. P. Cassinari, and G. Spiga, Shock wave structure for generalized Burnett equations, Physics of Fluids (1994–present) 23, 030607 (2011)
43 M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, 1989
44 S. Plimpton, P. Crozier, and A. Thompson, Lammpslarge- scale atomic/molecular massively parallel simulator, Sandia National Laboratories (2007)
45 L. Verlet, Computer “experiments” on classical fluids. i. thermodynamical properties of lennard-jones molecules, Phys. Rev. 159, 98 (1967)
https://doi.org/10.1103/PhysRev.159.98
46 W. J. Nellis, N. C. Holmes, A. C. Mitchell, R. J. Trainor, G. K. Governo, M. Ross, and D. A. Young, Shock compression of liquid helium to 56 gpa (560 kbar), Phys. Rev. Lett. 53, 1248 (1984)
https://doi.org/10.1103/PhysRevLett.53.1248
47 W. Kang, U. Landman, and A. Glezer, Thermal bending of nanojets: Molecular dynamics simulations of an asymmetrically heated nozzle, Appl. Phys. Lett. 93, 123116 (2008)
https://doi.org/10.1063/1.2988282
48 R. A. Aziz, V. P. S. Nain, J. S. Carley, W. L. Taylor, and G. T. McConville, An accurate intermolecular potential for helium, J. Chem. Phys. 70, 4330 (1979)
https://doi.org/10.1063/1.438007
49 J. H. Irving and J. G. Kirkwood, The statistical mechanical theory of transport processes (iv): the equations of hydrodynamics, J. Chem. Phys. 18, 817 (1950)
https://doi.org/10.1063/1.1747782
50 H. R. Rüter and R. Redmer, Ab Initio simulations for the ion-ion structure factor of warm dense aluminum, Phys. Rev. Lett. 112, 145007 (2014)
https://doi.org/10.1103/PhysRevLett.112.145007
51 B. Lexow, M. Wickert, K. Thoma, F. Schafer, M. H. Poelchau, and T. Kenkmann, The extra-large light-gas gun of the fraunhofer emi: Applications for impact cratering research, Meteoritics Planetary Science 48, 3 (2013)
https://doi.org/10.1111/j.1945-5100.2012.01427.x
52 Z. Fan, M. Chen, Z. Dai, H.-B. Cai, S.-P. Zhu, W. Zhang, and X. He, A new ignition scheme using hybrid indirect-direct drive for inertial confinement fusion, arXiv: 1303.1252 (2013)
53 H. Shu, X. Huang, J. Ye, J. Wu, G. Jia, Z. Fang, Z. Xie, H. Zhou, and S. Fu, Measuring high pressure equation of state of polystyrene using laser driven shock wave, Euro. Phys. J. D 69, 1 (2015)
https://doi.org/10.1140/epjd/e2015-60378-x
54 W. Tang, Shock Wave Physics, Science Press, 2011
55 Y. B. Zeldovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Tech. Rep., DTIC Document, 1965
56 V. V. Zhakhovskii, S. V. Zybin, K. Nishihara, and S. I. Anisimov, Shock wave structure in lennard-jones crystal via molecular dynamics, Phys. Rev. Lett. 83, 1175 (1999)
https://doi.org/10.1103/PhysRevLett.83.1175
57 R. Becker, Stoßwelle und detonation, Zeitschrift für Physik 8, 321 (1922)
https://doi.org/10.1007/BF01329605
58 L. Landau and E. M. Lifshitz, Theoretical Physics, Vol. 6, Hydrodynamics, 1986
59 L. H. Thomas, Note on Becker’s theory of the shock front, J. Chem. Phys. 12, 449 (1944)
https://doi.org/10.1063/1.1723889
60 S. Pfalzner, An Introduction to Inertial Confinement Fusion, CRC Press, 2006
https://doi.org/10.1201/9781420011845
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed