Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (1): 124204   https://doi.org/10.1007/s11467-016-0598-x
  本期目录
Ultraslow-light effects in symmetric and asymmetric waveguide structures with moon-like scatterers
Yong Wan,Xiao-Hui Ge,Sheng Xu,Yue Guo,Feng Yuan()
College of Physics Science, Qingdao University, Qingdao 266071, China
 全文: PDF(985 KB)  
Abstract

Ultraslow-light effects in two-dimensional hexagonal-lattice coupled waveguide with moon-like scatterers were theoretically studied using the plane-wave expansion method. For symmetric structures, simulations showed that slow light with high group index can be achieved by shifting the scatterers and adjusting the radius of moon-like scatterers. The maximum group index was over 8.0×104. For asymmetric structures, simulations showed that slow light with flat band and high group index can be obtained by shifting the scatterers, adjusting the radius of moon-like scatterers, and rotating the scatterers. The maximum group index was over 5.7×105 with a “saddle-like” relationship between the frequency and group index.

Key wordsmoon-like scatterer    slow light    coupled waveguide    photonic crystal
收稿日期: 2016-03-25      出版日期: 2016-10-17
Corresponding Author(s): Feng Yuan   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(1): 124204.
Yong Wan,Xiao-Hui Ge,Sheng Xu,Yue Guo,Feng Yuan. Ultraslow-light effects in symmetric and asymmetric waveguide structures with moon-like scatterers. Front. Phys. , 2017, 12(1): 124204.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0598-x
https://academic.hep.com.cn/fop/CN/Y2017/V12/I1/124204
1 T. F. Krauss, Slow light in photonic crystal waveguides, J. Phys. D 40(9), 2666 (2007)
https://doi.org/10.1088/0022-3727/40/9/S07
2 T. Baba, Slow light in photonic crystals, Nat. Photonics 2(8), 465 (2008)
https://doi.org/10.1038/nphoton.2008.146
3 Y. Hamachi, S. Kubo, and T. Baba, Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide, Opt. Lett. 34(7), 1072 (2009)
https://doi.org/10.1364/OL.34.001072
4 P. Kanakis, T. Kamalakis, and T. Sphicopoulos, Designing slow-light photonic crystal waveguides for four-wave mixing applications, Opt. Lett. 39(4), 884 (2014)
https://doi.org/10.1364/OL.39.000884
5 Y. Xu, L. Xiang, E. Cassan, D. Gao, and X. Zhang, Slow light in an alternative row of ellipse-hole photonic crystal waveguide, Appl. Opt. 52(6), 1155 (2013)
https://doi.org/10.1364/AO.52.001155
6 B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, Photonic crystal slot nanobeam slow light waveguides for refractive index sensing, Appl. Phys. Lett. 97(15), 151105 (2010)
https://doi.org/10.1063/1.3497296
7 C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides, Opt. Express 17(4), 2944 (2009)
https://doi.org/10.1364/OE.17.002944
8 K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, Enhanced third-order nonlinear effects in slow-light photoniccrystal slab waveguides of line-defect, Opt. Express 17(9), 7206 (2009)
https://doi.org/10.1364/OE.17.007206
9 N. Matsuda, H. Takesue, K. Shimizu, Y. Tokura, E. Kuramochi, and M. Notomi, Slow light enhanced correlated photon pair generation in photonic-crystal coupledresonator optical waveguides, Opt. Express 21(7), 8596 (2013)
https://doi.org/10.1364/OE.21.008596
10 S. Kubo, D. Mori, and T. Baba, Low-group-velocity and low-dispersion slow light in photonic crystal waveguides, Opt. Lett. 32(20), 2981 (2007)
https://doi.org/10.1364/OL.32.002981
11 L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, Photonic crystal waveguides with semislow light and tailored dispersion properties, Opt. Express 14(20), 9444 (2006)
https://doi.org/10.1364/OE.14.009444
12 C. Li, H. Tian, C. Zheng, and Y. Ji, Improved line defect structures for slow light transmission in photonic crystal waveguide, Opt. Commun. 279(1), 214 (2007)
https://doi.org/10.1016/j.optcom.2007.06.058
13 M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth, Opt. Express 15(1), 219 (2007)
https://doi.org/10.1364/OE.15.000219
14 A. Di Falco, L. O’Faolain, and T. F. Krauss, Dispersion control and slow light in slotted photonic crystal waveguides, Appl. Phys. Lett. 92(8), 083501 (2008)
https://doi.org/10.1063/1.2885072
15 C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide, Opt. Lett. 36(17), 3413 (2011)
https://doi.org/10.1364/OL.36.003413
16 N. Ozaki, Y. Kitagawa, Y. Takata, N. Ikeda, Y. Watanabe, A. Mizutani, Y. Sugimoto, and K. Asakawa, High transmission recovery of slow light in a photonic crystal waveguide using a hetero group-velocity waveguide, Opt. Express 15(13), 7974 (2007)
https://doi.org/10.1364/OE.15.007974
17 T. P. White, L. C. Botten, C. Martijn de Sterke, K. B. Dossou, and R. C. McPhedran, Efficient slow-light coupling in a photonic crystal waveguide without transition region, Opt. Lett. 33(22), 2644 (2008)
https://doi.org/10.1364/OL.33.002644
18 L. Hui, T. Huiping, L. Changhong, and J. Yue-Feng, Research on new type of slow light structure based on 2D photonic crystal coupled cavity waveguide, Acta Physica Sinica 58(3), 2049 (2009)
19 K. Tian, W. Arora, S. Takahashi, J. Hong, and G. Barbastathis, Dynamic group velocity control in a mechanically tunable photonic-crystal coupled-resonator optical waveguide, Phys. Rev. B 80(13), 134305 (2009)
https://doi.org/10.1103/PhysRevB.80.134305
20 K. Üstün and H. Kurt, Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides, Opt. Express 18(20), 21155 (2010)
https://doi.org/10.1364/OE.18.021155
21 N. Matsuda, E. Kuramochi, H. Takesue, and M. Notomi, Dispersion and light transport characteristics of largescale photonic-crystal coupled nanocavity arrays, Opt. Lett. 39(8), 2290 (2014)
https://doi.org/10.1364/OL.39.002290
22 H. Kurt, M. Turduev, and I. H. Giden, Crescent shaped dielectric periodic structure for light manipulation, Opt. Express 20(7), 7184 (2012)
https://doi.org/10.1364/OE.20.007184
23 S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, D. L. Kwong, and C. W. Wong, Observations of temporal group delays in slow-light multiple coupled photonic crystal cavities, Appl. Phys. Lett. 96(22), 221111 (2010)
https://doi.org/10.1063/1.3446893
24 T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide, Opt. Express 16(12), 9245 (2008)
https://doi.org/10.1364/OE.16.009245
25 Y. Wan, K. Fu, C. Li, and M. Yun, Improving slow light effect in photonic crystal line defect waveguide by using eye-shaped scatterers, Opt. Commun. 286(1), 192 (2013)
https://doi.org/10.1016/j.optcom.2012.09.025
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed