Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (5): 114212   https://doi.org/10.1007/s11467-016-0604-3
  本期目录
Research progress in Asia on methods of processing laser-induced breakdown spectroscopy data
Yang-Min Guo,Lian-Bo Guo(),Jia-Ming Li,Hong-Di Liu,Zhi-Hao Zhu,Xiang-You Li,Yong-Feng Lu,Xiao-Yan Zeng
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
 全文: PDF(604 KB)  
Abstract

Laser-induced breakdown spectroscopy (LIBS) has attracted much attention in terms of both scientific research and industrial application. An important branch of LIBS research in Asia, the development of data processing methods for LIBS, is reviewed. First, the basic principle of LIBS and the characteristics of spectral data are briefly introduced. Next, two aspects of research on and problems with data processing methods are described: i) the basic principles of data preprocessing methods are elaborated in detail on the basis of the characteristics of spectral data; ii) the performance of data analysis methods in qualitative and quantitative analysis of LIBS is described. Finally, a direction for future development of data processing methods for LIBS is also proposed.

Key wordslaser-induced breakdown spectroscopy    data preprocessing    data analysis
收稿日期: 2016-02-03      出版日期: 2016-10-17
Corresponding Author(s): Lian-Bo Guo   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(5): 114212.
Yang-Min Guo,Lian-Bo Guo,Jia-Ming Li,Hong-Di Liu,Zhi-Hao Zhu,Xiang-You Li,Yong-Feng Lu,Xiao-Yan Zeng. Research progress in Asia on methods of processing laser-induced breakdown spectroscopy data. Front. Phys. , 2016, 11(5): 114212.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0604-3
https://academic.hep.com.cn/fop/CN/Y2016/V11/I5/114212
1 F. Brech and L. Cross, Optical microemission stimulated by a ruby laser, Appl. Spectrosc. 16(2), 59 (1962)
2 R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, Laser-induced breakdown spectrometry—Applications for production control and quality assurance in the steel industry, Spectrochim. Acta B 56(6), 637 (2001)
https://doi.org/10.1016/S0584-8547(01)00214-2
3 D. Díaz, D. W. Hahn, and A. Molina, Laser-induced breakdown spectroscopy (LIBS) for detection of ammonium nitrate in soils, in: SPIE Defense, Security, and Sensing, 2009, International Society for Optics and Photonics
4 R. A. Multari, D. A. Cremers, J. M. Dupre, and J. E. Gustafson, The use of laser-induced breakdown spectroscopy for distinguishing between bacterial pathogen species and strains, Appl. Spectrosc. 64(7), 750 (2010)
https://doi.org/10.1366/000370210791666183
5 V. Juvé, R. Portelli, M. Boueri, M. Baudelet, and J. Yu, Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy, Spectrochim. Acta B 63(10), 1047 (2008)
https://doi.org/10.1016/j.sab.2008.08.009
6 S. Sreedhar, M. K. Gundawar, and S. Venugopal Rao, Laser induced breakdown spectroscopy for classification of high energy materials using elemental intensity ratios, Def. Sci. J. 64(4), 332 (2014)
https://doi.org/10.14429/dsj.64.4741
7 A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration, Appl. Spectrosc. 54(3), 331 (2000)
https://doi.org/10.1366/0003702001949591
8 D. W. Hahn and N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields, Appl. Spectrosc. 66(4), 347 (2012)
https://doi.org/10.1366/11-06574
9 R. Gaudiuso, M. Dell’Aglio, O. D. Pascale, G. S. Senesi, and A. D. Giacomo, Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: A review of methods and results, Sensors. 10(8), 7434 (2010)
https://doi.org/10.3390/s100807434
10 G. Y. Hou, P. Wang and C. Z. Tong, Progress in laserinduced breakdown spectroscopy and its applications, Chinese Opt. 4, 009 (2013)
11 Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)
https://doi.org/10.1007/s11467-013-0410-0
12 P. K. Diwakar, S. S. Harilal, J. R. Freeman, and A. Hassanein, Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy, Spectrochim. Acta B 87, 65 (2013)
https://doi.org/10.1016/j.sab.2013.05.015
13 G. Cristoforetti, E. Tognoni, and L. A. Gizzi, Thermodynamic equilibrium states in laser-induced plasmas: From the general case to laser-induced breakdown spectroscopy plasmas, Spectrochim. Acta B 90, 1 (2013)
https://doi.org/10.1016/j.sab.2013.09.004
14 D. Prochazka, J. Kaiser, K. Novotny, and M. Galiova, Recent development of double pulse laser induced breakdown spectroscopy (DP-LIBS) setup, J. Biochem. Tech. 2(5), S116 (2014)
15 L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation, Opt. Express 20(2), 1436 (2012)
https://doi.org/10.1364/OE.20.001436
16 L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy, Opt. Express 21(15), 18188 (2013)
https://doi.org/10.1364/OE.21.018188
17 L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy, Appl. Phys. Lett. 98(13), 131501 (2011)
https://doi.org/10.1063/1.3573807
18 L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement, Opt. Express 19(15), 14067 (2011)
https://doi.org/10.1364/OE.19.014067
19 Y. Lu, V. Zorba, X. Mao, R. Zheng, and R. E. Russo, Uv fs–ns double-pulse laser induced breakdown spectroscopy for high spatial resolution chemical analysis, J. Anal. At. Spectrom 28(5), 743 (2013)
https://doi.org/10.1039/c3ja30315b
20 J. El Haddad, L. Canioni, and B. Bousquet, Good practices in LIBS analysis: Review and advices, Spectrochim. Acta B 101, 171 (2014)
https://doi.org/10.1016/j.sab.2014.08.039
21 Z. Wang, F. Z. Dong, and W. D. Zhou, A rising force for the world-wide development of laser-induced breakdown spectroscopy, Plasma Sci. and Technol. 17(8), 617 (2015)
https://doi.org/10.1088/1009-0630/17/8/01
22 T. Fujimoto, Plasma Spectroscopy, Vol. 123, Oxford University Press on Demand, 2004
https://doi.org/10.1093/acprof:oso/9780198530282.001.0001
23 A. S. Eppler, D. A. Cremers, D. D. Hickmott, M. J. Ferris, and A. C. Koskelo, Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy, Appl. Spectrosc. 50(9), 1175 (1996)
https://doi.org/10.1366/0003702963905123
24 F. Bredice, F. O. Borges, H. Sobral, M. Villagran- Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements, Spectrochim. Acta B 61(12), 1294 (2006)
https://doi.org/10.1016/j.sab.2006.10.015
25 B. Zhang, L. X. Sun, H. B. Yu, Y. Xin, and Z. B. Cong, A method for improving wavelet threshold denoising in laser-induced breakdown spectroscopy, Spectrochim. Acta B 107, 32 (2015)
https://doi.org/10.1016/j.sab.2015.02.015
26 M. Sabsabi and P. Cielo, Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization, Appl. Spectrosc. 49(4), 499 (1995)
https://doi.org/10.1366/0003702953964408
27 B. Zhang, L. X. Sun, H. B. Yu, Y. Xin, and Z. B. Cong, Wavelet denoising method for laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 28(12), 1884 (2013)
https://doi.org/10.1039/c3ja50239b
28 L. X. Sun and H. B. Yu, Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy, Spectrochim. Acta B 64(3), 278 (2009)
https://doi.org/10.1016/j.sab.2009.02.010
29 B. Zhang, H. B. Yu, L. X. Sun, Y. Xin, and Z. B. Cong, A method for resolving overlapped peaks in laserinduced breakdown spectroscopy (LIBS), Appl. Spectrosc. 67(9), 1087 (2013)
https://doi.org/10.1366/12-06822
30 L. X. Sun, and H. B. Yu, Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method, Talanta 79(2), 388 (2009)
https://doi.org/10.1016/j.talanta.2009.03.066
31 Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, A spectrum standardization approach for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B 68, 58 (2012)
https://doi.org/10.1016/j.sab.2012.01.005
32 L. Z. Li, Z. Wang, T. B. Yuan, Z. Y. Hou, Z. Li, and W. D. Ni, A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2274 (2011)
https://doi.org/10.1039/c1ja10194c
33 Z. Y. Hou, Z. Wang, S. L. Lui, T. B. Yuan, L. Z. Li, Z. Li, and W. D. Ni, Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm, J. Anal. At. Spectrom. 28(1), 107 (2013)
https://doi.org/10.1039/C2JA30104K
34 J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy, Anal. Bioanal. Chem. 400(10), 3261 (2011)
https://doi.org/10.1007/s00216-011-4865-y
35 Z. Wang, J. Feng, L. Z. Li, W. D. Ni, and Z. Li, A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2289 (2011)
https://doi.org/10.1039/c1ja10041f
36 Z. Wang, J. Feng, L. Z. Li, W. D. Ni, and Z. Li, A nonlinearized PLS model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2175 (2011)
https://doi.org/10.1039/c1ja10113g
37 X. Li, Z. Wang, S. L. Lui, Y. Fu, Z. Li, J. Liu, and W. Ni, A partial least squares based spectrum normalization method for uncertainty reduction for laserinduced breakdown spectroscopy measurements, Spectrochim. Acta B 88, 180 (2013)
https://doi.org/10.1016/j.sab.2013.07.005
38 X. W. Li, Z. Wang, Y. T. Fu, Z. Li, and W. D. Ni, A model combining spectrum standardization and dominant factor based partial least square method for carbon analysis in coal using laser-induced breakdown spectroscopy, Spectrochim. Acta B 99, 82 (2014)
https://doi.org/10.1016/j.sab.2014.06.017
39 Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, Major elements analysis in bituminous coals under different ambient gases by laserinduced breakdown spectroscopy with PLS modeling, Front. Phys. 7(6), 708 (2012)
https://doi.org/10.1007/s11467-012-0262-z
40 T. B. Yuan, Z. Wang, Z. Li, W. D. Ni, and J. M. Liu, A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laserinduced breakdown spectroscopy, Anal. Chim. Acta 807, 29 (2014)
https://doi.org/10.1016/j.aca.2013.11.027
41 T. B. Yuan, Z. Wang, S. L. Lui, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, Coal property analysis using laserinduced breakdown spectroscopy, J. Anal. At. Spectrom. 28(7), 1045 (2013)
https://doi.org/10.1039/c3ja50097g
42 J. Feng, Z. Wang, L. Z. Li, Z. Li, and W. D. Ni, A Nonlinearized Multivariate Dominant Factor-Based Partial Least Squares (PLS) Model for Coal Analysis by Using Laser-Induced Breakdown Spectroscopy, Appl. Spectrosc. 67(3), 291 (2013)
https://doi.org/10.1366/11-06393
43 L. W. Sheng, T. L. Zhang, G. H. Niu, K. Wang, H. S. Tang, Y. X. Duan, and H. Li, Classification of iron ores by laser-induced breakdown spectroscopy (LIBS) combined with random forest (RF), J. Anal. At. Spectrom. 30(2), 453 (2015)
https://doi.org/10.1039/C4JA00352G
44 T. L. Zhang, L. Liang, K. Wang, H. S. Tang, X. F. Yang, Y. X. Duan, and H. Li, A novel approach for the quantitative analysis of multiple elements in steel based on laser-induced breakdown spectroscopy (LIBS) and random forest regression (RFR), J. Anal. At. Spectrom. 29(12), 2323 (2014)
https://doi.org/10.1039/C4JA00217B
45 L. Liang, T. L. Zhang, K. Wang, H. S. Tang, X. F. Yang, X. Q. Zhu, Y. X. Duan, and H. Li, Classification of steel materials by laser-induced breakdown spectroscopy coupled with support vector machines, Appl. Opt. 53(4), 544 (2014)
https://doi.org/10.1364/AO.53.000544
46 X. Q. Zhu, T. Xu, Q. Y. Lin, L. Liang, G. H. Niu, H. J. Lai, M. J. Xu, X. Wang, H. Li, and Y. X. Duan, Advanced statistical analysis of laser-induced breakdown spectroscopy data to discriminate sedimentary rocks based on Czerny–Turner and Echelle spectrometers, Spectrochim. Acta B 93, 8 (2014)
https://doi.org/10.1016/j.sab.2014.01.001
47 M. R. Dong, J. D. Lu, S. C. Yao, J. Li, J. Y. Li, Z. M. Zhong, and W. Y. Lu, Application of LIBS for direct determination of volatile matter content in coal, J. Anal. At. Spectrom. 26(11), 2183 (2011)
https://doi.org/10.1039/c1ja10109a
48 S. C. Yao, J. D. Lu, J. Y. Li, K. Chen, J. Li, and M. R. Dong, Multi-elemental analysis of fertilizer using laserinduced breakdown spectroscopy coupled with partial least squares regression, J. Anal. At. Spectrom. 25(11), 1733 (2010)
https://doi.org/10.1039/c0ja00027b
49 S. C. Yao, J. D. Lu, J. P. Zheng, and M. R. Dong, Analyzing unburned carbon in fly ash using laser-induced breakdown spectroscopy with multivariate calibration method, J. Anal. At. Spectrom. 27(3), 473 (2012)
https://doi.org/10.1039/c2ja10229c
50 S. C. Yao, J. D. Lu, M. R. Dong, K. Chen, J. Y. Li, and J. Li, Extracting coal ash content from laser-induced breakdown spectroscopy (LIBS) spectra by multivariate analysis, Appl. Spectrosc. 65(10), 1197 (2011)
https://doi.org/10.1366/10-06190
51 J. H. In, C. K. Kim, S. H. Lee, H. J. Lee, and S. Jeong, Improvement of selenium analysis during laser-induced breakdown spectroscopy measurement of CuIn1−xGaxSe2 solar cell films by self-absorption corrected normalization, J. Anal. At. Spectrom. 28(8), 1327 (2013)
https://doi.org/10.1039/c3ja50079a
52 J. H. In, C. K. Kim, S. H. Lee, J. H. Choi, and S. Jeong, Rapid quantitative analysis of elemental composition and depth profile of Cu(In, Ga)Se2 thin solar cell film using laser-induced breakdown spectroscopy, Thin Solid Films 579, 89 (2015)
https://doi.org/10.1016/j.tsf.2015.02.061
53 Y. Lee, K. S. Ham, S. H. Han, J. Yoo, and S. Jeong, Revealing discriminating power of the elements in edible sea salts: Line-intensity correlation analysis from laserinduced plasma emission spectra, Spectrochim. Acta B 101, 57 (2014)
https://doi.org/10.1016/j.sab.2014.07.012
54 M. Gazmeh, M. Bahreini, and S. H. Tavassoli, Discrimination of healthy and carious teeth using laser-induced breakdown spectroscopy and partial least square discriminant analysis, Appl. Opt. 54(1), 123 (2015)
https://doi.org/10.1364/AO.54.000123
55 M. Bahreini and S. H. Tavassoli, Possibility of thyroidism diagnosis by laser induced breakdown spectroscopy of human fingernail, J. Lasers Med. Sci. 3(3), 127 (2012)
56 X. H. Zou, L. B. Guo, M. Shen, X. Y. Li, Z. Q. Hao, Q. D. Zeng, Y. F. Lu, Z. M. Wang, and X. Y. Zeng, Accuracy improvement of quantitative analysis in laserinduced breakdown spectroscopy using modified wavelet transform, Opt. Express 22(9), 10233 (2014)
https://doi.org/10.1364/OE.22.010233
57 L. Hu, N. J. Zhao, W. Q. Liu, L. Fang, D. H. Zhang, Y. Wang, D. S. Meng, Y. Yu, M. J. Ma, X. Xiao, Y. Wang, and J. G. Liu, Study on removing method of continuous background spectrum in libs of multi-element heavy metals in water, Chinese J. Lasers 41(7), 0715003 (2014)
https://doi.org/10.3788/CJL201441.0715003
58 Y. Li and R. E. Zheng, The symmetric zero-area conversion adaptive peak-seeking method research for LIBS/Raman spectra, Spectroscopy and Spectral Analysis 33(2), 438 (2013)
59 P. F. Chen, D. Tian, S. J. Qiao, and G. Yang, An automatic peak detection method for libs spectrum based on continuous wavelet transform, Spectroscopy and Spectral Analysis 34(7), 1969 (2014)
60 J. H. Yang, C. C. Yi, J. W. Xu, and X. H. Ma, Laserinduced Breakdown spectroscopy quantitative analysis method via adaptive analytical line selection and relevance vector machine regression model, Spectrochim. Acta B 107, 45 (2015)
https://doi.org/10.1016/j.sab.2015.02.014
61 D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy, Spectrochim. Acta B 57(2), 339 (2002)
https://doi.org/10.1016/S0584-8547(01)00398-6
62 Z. B. Ni, F. Z. Dong, X. L. Chen, J. G. Wang, W. G. He, and H. B. Fu, Research on algorithm for self-absorption correction based on multi-particles libs spectra, Spectroscopy and Spectral Analysis 34(9), 2523 (2014)
63 J. R. Cordeiro, M. I. V. Martinez, R. W. C. Li, A. P. Cardoso, L. C. Nunes, F. J. Krug, T. R. L. C. Paixão, C. S. Nomura, and J. Gruber, Identification of four wood species by an electronic nose and by LIBS, Int. J. Electrochem. 2012, 1 (2012)
https://doi.org/10.1155/2012/563939
64 F. C. Jr De Lucia and J. L. Gottfried, Influence of variable selection on partial least squares discriminant analysis models for explosive residue classification, Spectrochim. Acta B 66(2), 122 (2011)
https://doi.org/10.1016/j.sab.2010.12.007
65 N. C. Dingari, I. Barman, A. K. Myakalwar, S. P. Tewari, and M. Kumar Gundawar, Incorporation of support vector machines in the LIBS toolbox for sensitive and robust classification amidst unexpected sample and system variability, Anal. Chem. 84(6), 2686 (2012)
https://doi.org/10.1021/ac202755e
66 G. Vítková, K. Novotný, L. Prokeš, A. Hrdlička, J. Kaiser, J. Novotný, R. Malina, and D. Prochazka, Fast identification of biominerals by means of stand-off laser‐induced breakdown spectroscopy using linear discriminant analysis and artificial neural networks, Spectrochim. Acta B 73, 1 (2012)
https://doi.org/10.1016/j.sab.2012.05.010
67 K. Liu, Q. Q. Wang and H. Zhao, Differentiation of plastic with laser induced breakdown spectroscopy, Spectroscopy and Spectral Analysis 31(5), 1171 (2011)
68 Y. Yu, Z. Q. Hao, C. M. Li, L. B. Guo, K. H. Li, Q. D. Zeng, X. Y. Li, Z. Ren, and X. Y. Zeng, Identification of plastics by laser-induced breakdown spectroscopy combined with support vector machine algorithm, Acta Phys. Sinica 62(21), 215201–215201 (2013)
69 Y. Tian, Z. N. Wang, X. S. Han, H. M. Hou, and R. E. Zheng, Comparative investigation of partial least squares discriminant analysis and support vector machines for geological cuttings identification using laserinduced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 102, 52 (2014)
https://doi.org/10.1016/j.sab.2014.10.014
70 Q. Q. Wang, Z. W. Huang, K. Liu, W. J. Li, and J. X. Yan, Classification of plastics with laser-induced breakdown spectroscopy based on principal component analysis and artificial neural network model, Spectroscopy and Spectral Analysis 32(12), 3179 (2012)
71 A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy, Appl. Spectrosc. 53(8), 960 (1999)
https://doi.org/10.1366/0003702991947612
72 V. K. Unnikrishnan, R. Nayak, K. Aithal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, Analysis of trace elements in complex matrices (soil) by Laser Induced Breakdown Spectroscopy (LIBS), Anal. Methods 5(5), 1294 (2013)
https://doi.org/10.1039/c2ay26006a
73 V. Sturm, L. Peter, and R. Noll, Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet, Appl. Spectrosc. 54(9), 1275 (2000)
https://doi.org/10.1366/0003702001951183
74 K. K. Ayyalasomayajula, V. Dikshit, F. Y. Yueh, J. P. Singh, and L. T. Smith, Quantitative analysis of slurry sample by laser-induced breakdown spectroscopy, Anal. Bioanal. Chem. 400(10), 3315 (2011)
https://doi.org/10.1007/s00216-011-4852-3
75 J. Amador-Hernández, L. E. García-Ayuso, J. M. Fernández-Romero, and M. D. Luque de Castro, Partial least squares regression for problem solving in precious metal analysis by laser induced breakdown spectrometry, J. Anal. At. Spectrom. 15(6), 587 (2000)
https://doi.org/10.1039/B000813N
76 C. L. Wang. J. G. Liu, N. J. Zhao, M. J. Ma, Y. Wang, L. Hu, D. H. Zhang, Y. Yu, D. S. Meng, W. Zhang, J. Liu, Y. J. Zhang, and W. Q. Liu, Quantitative analysis of laser-induced breakdown spectroscopy of heavy metals in water based on support-vector-machine regression, Acta Opt. Sinica 3, 045 (2013)
77 E. C. Ferreira, D. M. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system, Spectrochim. Acta B At. Spectrosc. 63(10), 1216 (2008)
https://doi.org/10.1016/j.sab.2008.08.016
78 J. H. Yang, C. C. Yi, J. W. Xu, and X. Ma, Laserinduced Breakdown spectroscopy quantitative analysis method via adaptive analytical line selection and relevance vector machine regression model, Spectrochim. Acta B 107, 45 (2015)
https://doi.org/10.1016/j.sab.2015.02.014
79 J. Amador-Hernández, L. E. García-Ayuso, J. M. Fernández-Romero, and M. D. Luque de Castro, Partial least squares regression for problem solving in precious metal analysis by laser induced breakdown spectrometry, J. Anal. At. Spectrom. 15(6), 587 (2000)
https://doi.org/10.1039/B000813N
80 H. Lin, Y. Mingyin, L. Jinlong, L. Muhua, and H. Xiuwen, Determination of Cadmium in Gannan Navel Orange using Laser-Induced Breakdown Spectroscopy Coupled with Partial Least Squares Calibration Model, J. Appl. Spectrosc. 80(6), 957 (2014)
https://doi.org/10.1007/s10812-014-9873-1
81 X. H. Zou, Z. Q. Hao, R. X. Yi, L. B. Guo, M. Shen, X. Y. Li, Z. M. Wang, X. Y. Zeng, and Y. F. Lu, Quantitative analysis of soil by laser-induced breakdown spectroscopy using genetic algorithm-partial least squares, Chinese J. Anal. Chem. 43(2), 181 (2015)
82 C. L. Wang. J. G. Liu, N. J. Zhao, M. J. Ma, Y. Wang, L. Hu, D. H. Zhang, Y. Yu, D. S. Meng, W. Zhang, J. Liu, Y. J. Zhang, and W. Q. Liu, Comparative analysis of quantitative method on heavy metal detection in water with laser-induced breakdown spectroscopy, Acta Phys. Sinica 12, 050 (2013)
83 Q. Shi, G. H. Niu, Q. Y. Lin, T. Xu, F. J. Li, and Y. X. Duan, Quantitative analysis of sedimentary rocks using laser-induced breakdown spectroscopy: comparison of support vector regression and partial least squares regression chemometric methods, J. Anal. At. Spectrom. 30(12), 2384 (2015)
https://doi.org/10.1039/C5JA00255A
84 T. L. Zhang, S. Wu, J. Dong, J. Wei, K. Wang, H. S. Tang, X. F. Yang, and H. Li, Quantitative and classification analysis of slag samples by laser induced breakdown spectroscopy (LIBS) coupled with support vector machine (SVM) and partial least square (PLS) methods, J. Anal. At. Spectrom. 30(2), 368 (2015)
https://doi.org/10.1039/C4JA00421C
85 Sun Lanxiang, Yu Haibin, Cong Zhibo, and Xin Yong, Quantitative analysis of Mn and Si of steels by laserinduced breakdown spectroscopy combined with neural networks, Acta Opt. Sin. 30(9), 2757 (2010)
https://doi.org/10.3788/AOS20103009.2757
86 K. H. Li, L. B. Guo, C. M. Li, X. Y. Li, M. Shen, Z. Zheng, Y. Yu, R. F. Hao, Z. Q. Hao, Q. D. Zeng, Y. F. Lu, and X. Y. Zeng, Analytical-performance improvement of laser-induced breakdown spectroscopy for steel using multi-spectral-line calibration with an artificial neural network, J. Anal. At. Spectrom. 30(7), 1623 (2015)
https://doi.org/10.1039/C5JA00089K
87 Q. M. Shen, W. D. Zhou, and K. X. Li, Quantative elemental analysis using laser induced breakdown spectroscopy and neuro-genetic approach, Chinese J. Lasers 38(3), 247 (2011)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed