Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (4): 127401   https://doi.org/10.1007/s11467-016-0621-2
  本期目录
Phase diagram and transport properties of Sb-doped Ca0.88La0.12Fe2As2 single crystals
Xiang-Zhuo Xing1,Wei Zhou1,Chun-Qiang Xu2,Nan Zhou1,Fei-Fei Yuan1,Yu-Feng Zhang1,Xiao-Feng Xu2(),Zhi-Xiang Shi1()
1. Department of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China
2. Department of Physics and Hangzhou Key Laboratory of Quantum Matters, Hangzhou Normal University, Hangzhou 310036, China
 全文: PDF(2731 KB)  
Abstract

The effects of isovalent Sb substitution on the superconducting properties of the Ca0.88La0.12Fe2(As1−ySby)2 system have been studied through electrical resistivity measurements. It is seen that the antiferromagnetic or structural transition is suppressed with Sb content, and a high-Tc superconducting phase, accompanied by a low-Tc phase, emerges at 0.02≤y≤0.06. In this intermediate-doping regime, normal-state transport shows non-Fermi-liquid-like behaviors with nearly T-linear resistivity above the high-Tc phase. With further Sb doping, this high-Tc phase abruptly vanishes for y>0.06 and the conventional Fermi liquid is restored, while the low-Tc phase remains robust against Sb impurities. The coincidence of the high-Tc phase and non-Fermi liquid transport behaviors in the intermediate Sb-doping regime suggests that AFM fluctuations play an important role in the observed non-Fermi liquid behaviors, which may be intimately related to the unusual nonbulk high-Tc phase in this system.

Key wordsSb doped Ca0.88La0.12Fe2As2 superconductors    electrical resistivity measurement    phase diagram
收稿日期: 2016-07-02      出版日期: 2016-10-17
Corresponding Author(s): Xiao-Feng Xu,Zhi-Xiang Shi   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(4): 127401.
Xiang-Zhuo Xing,Wei Zhou,Chun-Qiang Xu,Nan Zhou,Fei-Fei Yuan,Yu-Feng Zhang,Xiao-Feng Xu,Zhi-Xiang Shi. Phase diagram and transport properties of Sb-doped Ca0.88La0.12Fe2As2 single crystals. Front. Phys. , 2017, 12(4): 127401.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0621-2
https://academic.hep.com.cn/fop/CN/Y2017/V12/I4/127401
1 H. H. Wen and S. L. Li, Materials and novel superconductivity in iron pnictide superconductors, Annu. Rev. Condens. Matter Phys. 2(1), 121 (2011)
https://doi.org/10.1146/annurev-conmatphys-062910-140518
2 M. Rotter, M. Tegel, and D. Johrendt, Superconductivity at 38 K in the iron arsenide (Ba1−xKx)Fe2As2, Phys. Rev. Lett. 101(10), 107006 (2008)
https://doi.org/10.1103/PhysRevLett.101.107006
3 N. Ni, J. M. Allred, B. C. Chan, and R. J. Cava, High Tcelectron doped Ca10(Pt3As8)(Fe2As2)5 and Ca10(Pt4As8)(Fe2As2)5 superconductors with skutterudite intermediary layers, Proc. Natl. Acad. Sci. USA 108(45), E1019 (2011)
https://doi.org/10.1073/pnas.1110563108
4 N. Katayama, K. Kudo, S. Onari, T. Mizukami, K. Sugawara, Y. Sugiyama, Y. Kitahama, K. Iba, K. Fujimura, N. Nishimoto, M. Nohara, and H. Sawa, Superconductivity in Ca1−xLaxFeAs2: A novel 112-type iron pnictide with arsenic zigzag bonds, J. Phys. Soc. Jpn. 82(12), 123702 (2013)
https://doi.org/10.7566/JPSJ.82.123702
5 Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based layered superconductor La[O1−xFx]FeAs (x= 0.05−0.12) with Tc= 26 K, J. Am. Chem. Soc. 130(11), 3296 (2008)
https://doi.org/10.1021/ja800073m
6 M. J. Eom, S. W. Na, C. Hoch, R. K. Kremer, and J. S. Kim, Evolution of transport properties of BaFe2−xRuxAs2 in a wide range of isovalent Ru substitution, Phys. Rev. B 85(2), 024536 (2012)
https://doi.org/10.1103/PhysRevB.85.024536
7 S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Evolution from non-Fermi- to Fermi-liquid transport via isovalent doping in BaFe2(As1−xPx)2 superconductors, Phys. Rev. B 81(18), 184519 (2010)
https://doi.org/10.1103/PhysRevB.81.184519
8 S. Jiang, H. Xing, G. Xuan, C. Wang, Z. Ren, C. Feng, J. Dai, Z. Xu, and G. Cao, Superconductivity up to 30 K in the vicinity of the quantum critical point in BaFe2(As1−xPx)2, J. Phys.: Condens. Matter 21(38), 382203 (2009)
https://doi.org/10.1088/0953-8984/21/38/382203
9 S. Kasahara, T. Shibauchi, K. Hashimoto, Y. Nakai, H. Ikeda, T. Terashima, and Y. Matsuda, Abrupt recovery of Fermi-liquid transport following the collapse of the c axis in CaFe2(As1−xPx)2 single crystals, Phys. Rev. B 83(6), 060505(R) (2011)
10 C. Wang, S. Jiang, Q. Tao, Z. Ren, Y. Li, L. Li, C. Feng, J. Dai, G. Cao, and Z. A. Xu, Superconductivity in LaFeAs1−xPxO: Effect of chemical pressures and bond covalency, Europhys. Lett. 86(4), 47002 (2009)
https://doi.org/10.1209/0295-5075/86/47002
11 M. S. Torikachvili, S. L. Bud’ko, N. Ni, and P. C. Canfield, Pressure induced superconductivity in CaFe2As2, Phys. Rev. Lett. 101(5), 057006 (2008)
https://doi.org/10.1103/PhysRevLett.101.057006
12 H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, and H. Hosono, Superconductivity at 43 K in an iron-based layered compound LaO1−xFxFeAs, Nature 453(7193), 376 (2008)
https://doi.org/10.1038/nature06972
13 P. L. Alireza, Y. T. Ko, J. Gillett, C. M. Petrone, J. M. Cole, G. G. Lonzarich, and S. E. Sebastian, Superconductivity up to 29 K in SrFe2As2 and BaFe2As2 at high pressures, J. Phys.: Condens. Matter 21(1), 012208 (2009)
https://doi.org/10.1088/0953-8984/21/1/012208
14 L. Sun, X. J. Chen, J. Guo, P. Gao, Q. Z. Huang, H. Wang, M. Fang, X. Chen, G. Chen, Q. Wu, C. Zhang, D. Gu, X. Dong, L. Wang, K. Yang, A. Li, X. Dai, H. K. Mao, and Z. Zhao, Re-emerging superconductivity at 48 K in iron chalcogenides, Nature 483(7387), 67 (2012)
https://doi.org/10.1038/nature10813
15 S. J. E. Carlsson, F. Levy-Bertrand, C. Marcenat, A. Sulpice, J. Marcus, S. Pairis, T. Klein, M. Núñez-Regueiro, G. Garbarino, T. Hansen, V. Nassif, and P. Toulemonde, Effect of the isoelectronic substitution of Sb for As on the magnetic and structural properties of LaFe(As1−xSbx)O, Phys. Rev. B 84(10), 104523 (2011)
https://doi.org/10.1103/PhysRevB.84.104523
16 K. K. Hu, B. Gao, Q. C. Ji, Y. H. Ma, H. Zhang, G. Mu, F. Q. Huang, C. B. Cai, and X. M. Xie, Impurity scattering effect in Pd-doped superconductor SrPt3P, Front. Phys. 11(4), 117403 (2016)
https://doi.org/10.1007/s11467-016-0554-9
17 J. Prakash, S. J. Singh, G. Thakur, S. Patnaik, and A. K. Ganguli, The effect of antimony doping on the transport and magnetic properties of Ce(O/F)FeAs, Supercond. Sci. Technol. 24(12), 125008 (2011)
https://doi.org/10.1088/0953-2048/24/12/125008
18 S. J. Singh, J. Prakash, S. Patnaik, and A. K. Ganguli, Enhancement of the superconducting transition temperature and upper critical field of LaO0.8F0.2Fe As with antimony doping, Supercond. Sci. Technol. 22(4), 045017 (2009)
https://doi.org/10.1088/0953-2048/22/4/045017
19 Q. Ji, B. Gao, G. Mu, T. Hu, W. Li, Y. Liu, Y. Ma, and X. Xie, Enhancement of superconductivity by Sbdoping in the hole-doped iron-pnictide superconductor Pr1−xSrxFeAsO, Physica C 498, 50 (2014)
https://doi.org/10.1016/j.physc.2014.01.002
20 X. Xing, W. Zhou, B. Xu, N. Li, Y. Sun, Y. Zhang, and Z. Shi, Co-co-doping effect on superconducting properties of 112-type Ca0.8La0.2FeAs2 single crystals, J. Phys. Soc. Jpn. 84(7), 075001 (2015)
https://doi.org/10.7566/JPSJ.84.075001
21 H. Yakita, H. Ogino, A. Sala, T. Okada, A. Yamamoto, K. Kishio, A. Iyo, H. Eisaki, and J. Shimoyama, Co and Mn doping effect in polycrystalline (Ca, La) and (Ca, Pr)FeAs2 superconductors, Supercond. Sci. Technol. 28(6), 065001 (2015)
https://doi.org/10.1088/0953-2048/28/6/065001
22 K. Kudo, K. Iba, M. Takasuga, Y. Kitahama, J. Matsumura, M. Danura, Y. Nogami, and M. Nohara, Emergence of superconductivity at 45 K by lanthanum and phosphorus co-doping of CaFe2As2, Sci. Rep. 3, 1478 (2013)
https://doi.org/10.1038/srep01478
23 K. Kudo, Y. Kitahama, K. Fujimura, T. Mizukami, H. Ota, and M. Nohara, Superconducting transition temperatures of up to 47 K from simultaneous rare-earth element and antimony doping of 112-type CaFeAs2, J. Phys. Soc. Jpn. 83(9), 093705 (2014)
https://doi.org/10.7566/JPSJ.83.093705
24 S. R. Saha, N. P. Butch, T. Drye, J. Magill, S. Ziemak, K. Kirshenbaum, P. Y. Zavalij, J. W. Lynn, and J. Paglione, Structural collapse and superconductivity in rare-earth-doped CaFe2As2, Phys. Rev. B 85(2), 024525 (2012)
https://doi.org/10.1103/PhysRevB.85.024525
25 A. Kreyssig, M. A. Green, Y. Lee, G. D. Samolyuk, P. Zajdel, J. W. Lynn, S. L. Bud’ko, M. S. Torikachvili, N. Ni, S. Nandi, J. B. Leão, S. J. Poulton, D. N. Argyriou, B. N. Harmon, R. J. McQueeney, P. C. Canfield, and A. I. Goldman, Pressure-induced volume-collapsed tetragonal phase of CaFe2As2 as seen via neutron scattering, Phys. Rev. B 78(18), 184517 (2008)
https://doi.org/10.1103/PhysRevB.78.184517
26 A. I. Goldman, A. Kreyssig, K. Prokeš, D. K. Pratt, D. N. Argyriou, J. W. Lynn, S. Nandi, S. A. J. Kimber, Y. Chen, Y. B. Lee, G. Samolyuk, J. B. Leão, S. J. Poulton, S. L. Bud’ko, N. Ni, P. C. Canfield, B. N. Harmon, and R. J. McQueeney, Lattice collapse and quenching of magnetism in CaFe2As2 under pressure: A single-crystal neutron and X-ray diffraction investigation, Phys. Rev. B 79(2), 024513 (2009)
https://doi.org/10.1103/PhysRevB.79.024513
27 B. Gao, X. Li, Q. Ji, G. Mu, W. Li, T. Hu, A. Li, and X. Xie, Phase diagram and weak-link behavior in Nddoped CaFe2As2, New J. Phys. 16(11), 113024 (2014)
https://doi.org/10.1088/1367-2630/16/11/113024
28 K. Zhao, Q. Q. Liu, X. C. Wang, Z. Deng, Y. X. Lv, J. L. Zhu, F. Y. Li, and C. Q. Jin, Doping dependence of the superconductivity of (Ca1−xNax)Fe2As2, Phys. Rev. B 84(18), 184534 (2011)
https://doi.org/10.1103/PhysRevB.84.184534
29 J. J. Ying, J. C. Liang, X. G. Luo, X. F. Wang, Y. J. Yan, M. Zhang, A. F. Wang, Z. J. Xiang, G. J. Ye, P. Cheng, and X. H. Chen, Transport and magnetic properties of La-doped CaFe2As2, Phys. Rev. B 85(14), 144514 (2012)
https://doi.org/10.1103/PhysRevB.85.144514
30 D. M. Wang, X. C. Shangguan, J. B. He, L. X. Zhao, Y. J. Long, P. P. Wang, and L. Wang, Superconductivity at 35.5 K in K-doped CaFe2As2, J. Supercond. Nov. Magn. 26(6), 2121 (2013)
https://doi.org/10.1007/s10948-013-2169-5
31 B. Lv, L. Deng, M. Gooch, F. Wei, Y. Sun, J. K. Meen, Y. Y. Xue, B. Lorenz, and C. W. Chu, Unusual superconducting state at 49 K in electron-doped CaFe2As2 at ambient pressure, Proc. Natl. Acad. Sci. USA 108(38), 15705 (2011)
https://doi.org/10.1073/pnas.1112150108
32 Z. Gao, Y. Qi, L. Wang, D. Wang, X. Zhang, C. Yao, C. Wang, and Y. Ma, Synthesis and properties of La-doped CaFe2As2 single crystals with Tc= 42.7 K, Europhys. Lett. 95(6), 67002 (2011)
https://doi.org/10.1209/0295-5075/95/67002
33 L. Harnagea, S. Singh, G. Friemel, N. Leps, D. Bombor, M. Abdel-Hafiez, A. U. B. Wolter, C. Hess, R. Klingeler, G. Behr, S. Wurmehl, and B. Büchner, Phase diagram of the iron arsenide superconductors Ca(Fe1−xCox)2As2 (0≤x≤0.2), Phys. Rev. B 83(9), 094523 (2011)
https://doi.org/10.1103/PhysRevB.83.094523
34 N. Kumar, S. Chi, Y. Chen, K. Rana, A. Nigam, A. Thamizhavel, W. Ratcliff, S. Dhar, and J. Lynn, Evolution of the bulk properties, structure, magnetic order, and superconductivity with Ni doping in CaFe2−xNixAs2, Phys. Rev. B 80(14), 144524 (2009)
https://doi.org/10.1103/PhysRevB.80.144524
35 M. Torikachvili, S. Bud’ko, N. Ni, P. Canfield, and S. Hannahs, Effect of pressure on transport and magnetotransport properties in CaFe2As2 single crystals, Phys. Rev. B 80(1), 014521 (2009)
https://doi.org/10.1103/PhysRevB.80.014521
36 Y. Sun, W. Zhou, L. J. Cui, J. C. Zhuang, Y. Ding, F. F. Yuan, J. Bai, and Z. X. Shi, Evidence of two superconducting phases in Ca1−xLaxFe2As2, AIP Adv. 3(10), 102120 (2013)
https://doi.org/10.1063/1.4826584
37 W. Zhou, F. F. Yuan, J. C. Zhuang, Y. Sun, Y. Ding, L. J. Cui, J. Bai, and Z. X. Shi, Upper critical fields and anisotropy of Ca1−xLaxFe2As2 single crystals, Supercond. Sci. Technol. 26(9), 095003 (2013)
https://doi.org/10.1088/0953-2048/26/9/095003
38 K. Gofryk, M. Pan, C. Cantoni, B. Saparov, J. E. Mitchell, and A. S. Sefat, Local inhomogeneity and filamentary superconductivity in Pr-doped CaFe2As2, Phys. Rev. Lett. 112(4), 047005 (2014)
https://doi.org/10.1103/PhysRevLett.112.047005
39 I. Zeljkovic, D. Huang, C.L. Song, B. Lv, C.W. Chu, and J. E. Hoffman, Nanoscale surface element identification and dopant homogeneity in the high-Tc superconductor PrxCa1−xFe2As2, Phys. Rev. B 87, 201108(R) (2013)
40 L. Z. Deng, B. Lv, K. Zhao, F. Y. Wei, Y. Y. Xue, Z. Wu, and C. W. Chu, Evidence for defect-induced superconductivity up to 49 K in (Ca1−xRx)Fe2As2, Phys. Rev. B 93(5), 054513 (2016)
https://doi.org/10.1103/PhysRevB.93.054513
41 Y. Qi, Z. Gao, L. Wang, D. Wang, X. Zhang, C. Yao, C. Wang, C. Wang, and Y. Ma, Transport properties and anisotropy in rare-earth doped CaFe2As2 single crystals with Tcabove 40 K, Supercond. Sci. Technol. 25(4), 045007 (2012)
https://doi.org/10.1088/0953-2048/25/4/045007
42 S. R. Saha, T. Drye, S. K. Goh, L. E. Klintberg, J. M. Silver, F. M. Grosche, M. Sutherland, T. J. S. Munsie, G. M. Luke, D. K. Pratt, J. W. Lynn, and J. Paglione, Segregation of antiferromagnetism and hightemperature superconductivity in Ca1−xLaxFe2As2, Phys. Rev. B 89(13), 134516 (2014) 127401-6
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed