Explosive synchronization enhances selectivity: Example of the cochlea
Chao-Qing Wang1,Alain Pumir2,Nicolas B. Garnier2(),Zong-Hua Liu1()
1. Department of Physics, East China Normal University, Shanghai 200241, China 2. Laboratoire de Physique de l’ENS de Lyon, CNRS UMR 5672, 46 Allée d’Italie, F-69364 Lyon, France
Acoustical signal transduction in the cochlea is an active process that involves nonlinear amplification and spontaneous otoacoustic emissions. Signal transduction involves individual subunits composed of globally coupled hair cells, which can be modeled as oscillators close to a Hopf bifurcation. The coupling may induce a transition toward synchronization, which in turn leads to a strong nonlinear response. In the model studied here, the synchronization transition of the subunit is discontinuous (explosive) in the absence of an external stimulus. We show that, in the presence of an external stimulus and for a coupling strength slightly lower than the critical value leading to explosive synchronization, the response of the subunit has better frequency selectivity and a larger signal-to-noise ratio. From physiological observations that subunits are themselves coupled together, we further propose a model of the complete cochlea, accounting for the ensemble of frequencies that the organ is able to detect.
P. L. Boyland, Bifurcations of circle maps: Arnol’d tongues, bistability and rotation intervals, Commun. Math. Phys. 106(3), 353 (1986)
https://doi.org/10.1007/BF01207252
R. Stoop and A. Kern, Two-tone suppression and combination tone generation as computations performed by the hopf cochlea, Phys. Rev. Lett. 93(26), 8103 (2004)
https://doi.org/10.1103/PhysRevLett.93.268103
18
K. Dierkes, B. Lindner, and F. Jüicher, Enhancement of sensitivity gain and frequency tuning by coupling of active hair bundles, Proc. Natl. Acad. Sci. USA 105(48), 18669 (2008)
https://doi.org/10.1073/pnas.0805752105
19
A. Vilfan, and T. Duke, Frequency clustering in spontaneous otoacoustic emissions from a Lizard’s ear, Biophys. J. 95(10), 4622 (2008)
https://doi.org/10.1529/biophysj.108.130286
20
M. Gelfand, O. Piro, M. O. Magnasco, and A. J. Hudspeth, Hudspeth a J. Interactions between hair cells shape spontaneous otoacoustic emissions in a model of the Tokay Gecko’s cochlea, PLoS One 5(6), e11116 (2010)
https://doi.org/10.1371/journal.pone.0011116
21
H. P. Wit and P. van Dijk, Are human spontaneous otoacoustic emissions generated by a chain of coupled nonlinear oscillators? J. Acoust. Soc. Am. 132(2), 918 (2012)
https://doi.org/10.1121/1.4730886
22
Z. Liu, B. Li, and Y.-C. Lai, Enhancing mammalian hearing by a balancing between spontaneous otoacoustic emissions and spatial coupling, Europhys. Lett. 98(2), 20005 (2012)
https://doi.org/10.1209/0295-5075/98/20005
J. Gómez-Gardenes, S. Gómez, A. Arenas, and Y. Moreno, Explosive synchronization transitions in scalefree networks, Phys. Rev. Lett. 106(12), 128701 (2011)
https://doi.org/10.1103/PhysRevLett.106.128701
1
L. Robles and M. A. Ruggero, Mechanics of the mammalian cochlea, Physiol. Rev. 81, 1305 (2001)
2
A. Hudspeth, Hearing, in: Principles of Neural Science, 4th Ed., McGraw-Hill, 2000
3
See, for example, J. O. Pickles, An Introduction to the Physiology of Hearing, 2nd Ed., Academic Press, 1988
4
S. S. Narayan, A. N. Temchin, A. Recio, and M. A. Ruggero, Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae, Science 282(5395), 1882 (1998)
https://doi.org/10.1126/science.282.5395.1882
5
J. F. Ashmore, G. S. Géléoc, and L. Harbott, Molecular mechanisms of sound amplification in the mammalian cochlea, Proc. Natl. Acad. Sci. USA 97(22), 11759 (2000)
https://doi.org/10.1073/pnas.97.22.11759
6
K. E. Nilsen and I. J. Russell, The spatial and temporal representation of a tone on the guinea pig basilar membrane, Proc. Natl. Acad. Sci. USA 97(22), 11751 (2000)
https://doi.org/10.1073/pnas.97.22.11751
7
D. T. Kemp, Stimulated acoustic emissions from within the human auditory system, J. Acoust. Soc. Am. 64(5), 1386 (1978)
https://doi.org/10.1121/1.382104
8
R. Probst, B. L. Lonsbury-Martin, G. K. Martin, B. L. Lonsburymartin, and G. K. Martin, A review of otoacoustic emissions, J. Acoust. Soc. Am. 89(5), 2027 (1991)
https://doi.org/10.1121/1.400897
9
V. M. Eguíluz, M. Ospeck, Y. Choe, A. J. Hudspeth, and M. O. Magnasco, Essential nonlinearities in hearing, Phys. Rev. Lett. 84(22), 5232 (2000)
https://doi.org/10.1103/PhysRevLett.84.5232
10
S. Camalet, T. Duke, F. Jüicher, and J. Prost, Auditory sensitivity provided by self-tuned critical oscillations of hair cells, Proc. Natl. Acad. Sci. USA 97(7), 3183 (2000)
https://doi.org/10.1073/pnas.97.7.3183
11
J. Cartwright, D. González, and O. Piro, Nonlinear dynamics of the perceived pitch of complex sounds, Phys. Rev. Lett. 82(26), 5389 (1999)
https://doi.org/10.1103/PhysRevLett.82.5389
12
K. A. Montgomery, M. Silber, and S. A. Solla, Amplification in the auditory periphery: The effect of coupling tuning mechanisms, Phys. Rev. E 75(5), 051924 (2007)
https://doi.org/10.1103/PhysRevE.75.051924
26
I. Leyva, R. Sevilla-Escoboza, J. M. Buldú, I. Sendina- Nadal, J. Gomez-Gardenes, A. Arenas, Y. Moreno, S. Gómez, R. Jaimes-Reátegui, and S. Boccaletti, Explosive first-order transition to synchrony in networked chaotic oscillators, Phys. Rev. Lett. 108(16), 168702 (2012)
https://doi.org/10.1103/PhysRevLett.108.168702
27
P. Ji, T. K. D. Peron, P. J. Menck, F. A. Rodrigues, and J. Kurths, Cluster explosive synchronization in complex networks, Phys. Rev. Lett. 110(21), 218701 (2013)
https://doi.org/10.1103/PhysRevLett.110.218701
X. Zhang, X. Hu, J. Kurths, and Z. Liu, Explosive synchronization in a general complex network, Phys. Rev. E 88(1), 010802 (2013)
https://doi.org/10.1103/PhysRevE.88.010802
29
I. Leyva, A. Navas, I. Sendina-Nadal, J. A. Almendral, J. M. Buldú, M. Zanin, D. Papo, and S. Boccaletti, Explosive transitions to synchronization in networks of phase oscillators, Sci. Rep. 3, 1281 (2013)
https://doi.org/10.1038/srep01281
30
Y. Zou, T. Pereira, M. Small, Z. Liu, and J. Kurths, Basin of attraction determines hysteresis in explosive synchronization, Phys. Rev. Lett. 112(11), 114102 (2014)
https://doi.org/10.1103/PhysRevLett.112.114102
31
X. Zhang, Y. Zou, S. Boccaletti, and Z. Liu, Explosive synchronization as a process of explosive percolation in dynamical phase space, Sci. Rep. 4, 5200 (2014)
https://doi.org/10.1038/srep05200
32
X. Hu, S. Boccaletti, W. Huang, X. Zhang, Z. Liu, S. Guan, and C. H. Lai, Exact solution for first-order synchronization transition in a generalized Kuramoto model, Sci. Rep. 4, 7262 (2014)
https://doi.org/10.1038/srep07262
33
X. Zhang, S. Boccaletti, S. Guan, and Z. Liu, Explosive synchronization in adaptive and multilayer networks, Phys. Rev. Lett. 114(3), 038701 (2015)
https://doi.org/10.1103/PhysRevLett.114.038701
34
T. Qiu, Y. Zhang, J. Liu, H. Bi, S. Boccaletti, Z. Liu, and S. Guan, Landau damping effects in the synchronization of conformist and contrarian oscillators, Sci. Rep. 5, 18235 (2015)
https://doi.org/10.1038/srep18235
35
P. C. Matthews, R. E. Mirollo, and S. H. Strogatz, Dynamics of a large system of coupled nonlinear oscillators, Physica D 52(2–3), 293 (1991)
https://doi.org/10.1016/0167-2789(91)90129-W
36
C. Wang and N. Garnier, Continuous and discontinuous transitions to synchronization, arXiv: 1609.05584
37
J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77(1), 137 (2005)
https://doi.org/10.1103/RevModPhys.77.137
L. Fredrickson-Hemsing, S. Ji, R. Bruinsma, and D. Bozovic, Mode-locking dynamics of hair cells of the inner ear, Phys. Rev. E 86(2), 21915 (2012)
https://doi.org/10.1103/PhysRevE.86.021915