Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (1): 120304   https://doi.org/10.1007/s11467-016-0641-y
  本期目录
Detecting ground-state degeneracy in many-body systems through qubit decoherence
Hai-Tao Cui (崔海涛)1,2(),Xue-Xi Yi (衣学喜)2()
1. School of Physics and Electric Engineering, Anyang Normal University, Anyang 455000, China
2. Center for Quantum Sciences, Northeast Normal University, Changchun 130024, China
 全文: PDF(7254 KB)  
Abstract

By coupling with a qubit, we demonstrate that qubit decoherence can unambiguously detect the occurrence of ground-state degeneracy in many-body systems. We first demonstrate universality using the two-band model. Consequently, several exemplifications, focused on topological condensed matter systems in one, two, and three dimensions, are presented to validate our proposal. The key point is that qubit decoherence varies significantly when energy bands touch each other at the Fermi surface. In addition, it can partially reflect the degeneracy inside the band. This feature implies that qubit decoherence can be used for reliable diagnosis of ground-state degeneracy.

Key wordsdecoherence    quantum phase transition    ground-state degeneracy
收稿日期: 2016-08-18      出版日期: 2016-12-19
Corresponding Author(s): Hai-Tao Cui (崔海涛),Xue-Xi Yi (衣学喜)   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(1): 120304.
Hai-Tao Cui (崔海涛),Xue-Xi Yi (衣学喜). Detecting ground-state degeneracy in many-body systems through qubit decoherence. Front. Phys. , 2017, 12(1): 120304.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0641-y
https://academic.hep.com.cn/fop/CN/Y2017/V12/I1/120304
1 D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a twodimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
https://doi.org/10.1103/PhysRevLett.49.405
2 X. G. Wen, Vacuum degeneracy of chiral spin states in compactified space, Phys. Rev. B 40(10), 7387 (1989)
https://doi.org/10.1103/PhysRevB.40.7387
3 X. G. Wen and Q. Niu, Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces, Phys. Rev. B 41(13), 9377 (1990)
https://doi.org/10.1103/PhysRevB.41.9377
4 A. Damascelli, Z. Hussain, and Z. X. Shen, Angleresolved photoemission studies of the cuprate supercon-ductors, Rev. Mod. Phys. 75(2), 473 (2003)
https://doi.org/10.1103/RevModPhys.75.473
5 H. T. Quan, Z. Song, X. F. Liu, P. Zanardi, and C. P. Sun, Decay of Loschmidt echo enhanced by quantum criticality, Phys. Rev. Lett. 96(14), 140604 (2006)
https://doi.org/10.1103/PhysRevLett.96.140604
6 W. Yang, Z. Y. Wang, and R. B. Liu, Preserving qubit coherence by dynamical decoupling, Front. Phys. 6(1), 2 (2011)
https://doi.org/10.1007/s11467-010-0113-8
7 S. Ryu and Y. Hatsugai, Topological origin of zeroenergy edge states in particle–hole symmetric systems, Phys. Rev. Lett. 89(7), 077002 (2002)
https://doi.org/10.1103/PhysRevLett.89.077002
8 M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
https://doi.org/10.1103/RevModPhys.82.3045
9 X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
https://doi.org/10.1103/RevModPhys.83.1057
10 X. L. Qi, Y. S. Wu, and S. C. Zhang, Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors, Phys. Rev. B 74(8), 085308 (2006)
https://doi.org/10.1103/PhysRevB.74.085308
11 B. A. Bernevig and T. L. Hughes, Topological Insulators and Topological Superconductors, New Jersey: Princeton University Press, 2013
https://doi.org/10.1515/9781400846733
12 A. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, Solitons in conducting polymers, Rev. Mod. Phys. 60(3), 781 (1988)
https://doi.org/10.1103/RevModPhys.60.781
13 S. Ryu and Y. Hatsugai, Entanglement entropy and the Berry phase in the solid state, Phys. Rev. B 73(24), 245115 (2006)
https://doi.org/10.1103/PhysRevB.73.245115
14 C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95(22), 226801 (2005)
https://doi.org/10.1103/PhysRevLett.95.226801
15 C. L. Kane and E. J. Mele, Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett. 95(14), 146802 (2005)
https://doi.org/10.1103/PhysRevLett.95.146802
16 S. Murakami, Phase transition between the quantum spin Hall and insulator phases in 3D: Emergence of a topological gapless phase, New J. Phys. 9(9), 356 (2007)
https://doi.org/10.1088/1367-2630/9/9/356
17 X. G. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83(20), 205101 (2011)
https://doi.org/10.1103/PhysRevB.83.205101
18 M. M. Vazifeh and M. Franz, Electromagnetic response of Weyl semimetals, Phys. Rev. Lett. 111(2), 027201 (2013)
https://doi.org/10.1103/PhysRevLett.111.027201
19 M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold Atoms in Optical Lattices, Oxford: Oxford University Press, 2012
https://doi.org/10.1093/acprof:oso/9780199573127.001.0001
20 Y. J. Lin, K. Jiménez-García, and I. B. Spielman, Spin–orbit-coupled Bose–Einstein condensates, Nature 471(7336), 83 (2011)
https://doi.org/10.1038/nature09887
21 G. C. Liu, S. L. Zhu, S. J. Jiang, F. D. Sun, and W. M. Liu, Simulating and detecting the quantum spin Hall effect in the Kagome optical lattice, Phys. Rev. A 82(5), 053605 (2010)
https://doi.org/10.1103/PhysRevA.82.053605
22 L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice, Nature 483(7389), 302 (2012)
https://doi.org/10.1038/nature10871
23 G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Experimental realization of the topological Haldane model with ultracold fermins, Nature 515(7526), 237 (2014)
https://doi.org/10.1038/nature13915
24 L. Duca, T. Li, M. Reitter, I. Bloch, M. Schleier- Smith, and U. Schneider, An Aharanov–Bohm interferometer for determining Bloch band topology, Science 347(6219), 288 (2015)
https://doi.org/10.1126/science.1259052
25 X. X. Yi, H. T. Cui, and L. C. Wang, Entanglement induced in spin-1/2 particles by a spin chain near its critical points, Phys. Rev. A 74(5), 054102 (2006)
https://doi.org/10.1103/PhysRevA.74.054102
26 A. Abliz, H. J. Gao, X. C. Xie, Y. S. Wu, and W. M. Liu, Entanglement control in an anisotropic two-qubit Heisenberg XYZmodel with external magnetic fields, Phys. Rev. A 74(5), 052105 (2006)
https://doi.org/10.1103/PhysRevA.74.052105
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed