Irreversible Markov chain Monte Carlo algorithm for self-avoiding walk
Hao Hu1,2,3,Xiaosong Chen2,Youjin Deng1,2()
1. National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China 2. State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China 3. School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
We formulate an irreversible Markov chain Monte Carlo algorithm for the self-avoiding walk (SAW), which violates the detailed balance condition and satisfies the balance condition. Its performance improves significantly compared to that of the Berretti–Sokal algorithm, which is a variant of the Metropolis–Hastings method. The gained efficiency increases with spatial dimension (D), from approximately 10 times in 2D to approximately 40 times in 5D. We simulate the SAW on a 5D hypercubic lattice with periodic boundary conditions, for a linear system with a size up to L= 128, and confirm that as for the 5D Ising model, the finite-size scaling of the SAW is governed by renormalized exponents, υ*= 2/d and γ/υ*= d/2. The critical point is determined, which is approximately 8 times more precise than the best available estimate.
K. S. Turitsyn, M. Chertkov, and M. Vucelja, Irreversible Monte Carlo algorithms for efficient sampling, Physica D 240(4–5), 410 (2011)
https://doi.org/10.1016/j.physd.2010.10.003
8
H. C. M. Fernandes and M. Weigel, Non-reversible Monte Carlo simulations of spin models, Comput. Phys. Commun. 182(9), 1856 (2011)
https://doi.org/10.1016/j.cpc.2010.11.017
9
E. Bernard, W. Krauth, and D. Wilson, Event-chain Monte Carlo algorithms for hard-sphere systems, Phys. Rev. E 80(5), 056704 (2009)
https://doi.org/10.1103/PhysRevE.80.056704
10
M. Engel, J. A. Anderson, S. C. Glotzer, M. Isobe, E. P. Bernard, and W. Krauth, Hard-disk equation of state: First-order liquid-hexatic transition in two dimensions with three simulation methods, Phys. Rev. E 87(4), 042134 (2013)
https://doi.org/10.1103/PhysRevE.87.042134
11
M. Michel, S. C. Kapfer, and W. Krauth, Generalized event-chain Monte Carlo: Constructing rejection-free global balance algorithms from infinitesimal steps, J. Chem. Phys. 140(5), 054116 (2014)
https://doi.org/10.1063/1.4863991
12
S. C. Kapfer and W. Krauth, Soft-disk melting: From liquid-hexatic coexistence to continuous transitions, Phys. Rev. Lett. 114(3), 035702 (2015)
https://doi.org/10.1103/PhysRevLett.114.035702
Y. Nishikawa, M. Michel, W. Krauth, and K. Hukushima, Event-chain algorithm for the Heisenberg model: Evidence for z~1 dynamic scaling, Phys. Rev. E 92(6), 063306 (2015)
https://doi.org/10.1103/PhysRevE.92.063306
15
K. Hukushima and Y. Sakai, An irreversible Markovchain Monte Carlo method with skew detailed balance conditions, J. Phys. Conf. Ser. 473, 012012 (2013)
https://doi.org/10.1088/1742-6596/473/1/012012
16
Y. Sakai and K. Hukushima, Dynamics of onedimensional Ising model without detailed balance condition, J. Phys. Soc. Jpn. 82(6), 064003 (2013)
https://doi.org/10.7566/JPSJ.82.064003
A. Berretti and A. D. Sokal, New Monte Carlo method for the self-avoiding walk,J. Stat. Phys. 40(3–4), 483 (1985)
19
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equations of state calculations by fast computing machines, J. Chem. Phys. 21(6), 1087 (1953)
https://doi.org/10.1063/1.1699114
20
W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57(1), 97 (1970)
https://doi.org/10.1093/biomet/57.1.97
21
I. Jensen, A parallel algorithm for the enumeration of self-avoiding polygons on the square lattice, J. Phys. Math. Gen. 36(21), 5731 (2003)
https://doi.org/10.1088/0305-4470/36/21/304
22
J. L. Jacobsen, C. R. Scullard, and A. J. Guttmann, On the growth constant for square-lattice self-avoiding walks, arXiv: 1607.02984 (2016)
23
H. P. Hsu and P. Grassberger, Polymers confined between two parallel plane walls, J. Chem. Phys. 120(4), 2034 (2004)
https://doi.org/10.1063/1.1636454
H. Müller-Krumbhaar and K. Binder, Dynamic properties of the Monte Carlo method in statistical mechanics, J. Stat. Phys. 8, 1 (1973)
https://doi.org/10.1007/BF01008440
F. Flores-Sola, B. Berche, R. Kenna, and M. Weigel, Role of Fourier modes in finite-size scaling above the upper critical dimension, Phys. Rev. Lett. 116(11), 115701 (2016)
https://doi.org/10.1103/PhysRevLett.116.115701
Y. Deng, T. M. Garoni, and A. D. Sokal, Dynamic critical behavior of the worm algorithm for the Ising model, Phys. Rev. Lett. 99(11), 110601 (2007)
https://doi.org/10.1103/PhysRevLett.99.110601
N. Madras and A. D. Sokal, The Pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk, J. Stat. Phys. 50(1–2), 109 (1988)
https://doi.org/10.1007/BF01022990
36
P. Grassberger, Pruned-enriched Rosenbluth method: Simulation of q-polymers of chain length up to 1000 000, Phys. Rev. E 56(3), 3682 (1997)
https://doi.org/10.1103/PhysRevE.56.3682