Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (4): 127305   https://doi.org/10.1007/s11467-016-0647-5
  本期目录
Low conductance of nickel atomic junctions in hydrogen atmosphere
Shuaishuai Li1,Yi-Qun Xie1(),Yibin Hu2()
1. Department of Physics, Shanghai Normal University, Shanghai 200234, China
2. National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
 全文: PDF(2278 KB)  
Abstract

The low conductance of nickel atomic junctions in the hydrogen environment is studied using the nonequilibrium Green’s function theory combined with first-principles calculations. The Ni junction bridged by a H2 molecule has a conductance of approximately 0.7 G0. This conductance is contributed by the anti-bonding state of the H2 molecule, which forms a bonding state with the 3d orbitals of the nearby Ni atoms. In contrast, the Ni junction bridged by the two single H atoms has a conductance of approximately 1 G0, which is weakly spin-polarized. The spin-up channels were found to contribute mostly to the conductance at a small junction gap, while the spin-down channels play a dominant role at a larger junction gap.

Key wordsatomic junction    conductance    nickel    hydrogen
收稿日期: 2016-10-09      出版日期: 2016-12-30
Corresponding Author(s): Yi-Qun Xie,Yibin Hu   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(4): 127305.
Shuaishuai Li,Yi-Qun Xie,Yibin Hu. Low conductance of nickel atomic junctions in hydrogen atmosphere. Front. Phys. , 2017, 12(4): 127305.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0647-5
https://academic.hep.com.cn/fop/CN/Y2017/V12/I4/127305
1 H. Ohnishi, Y. Kondo, and K. Takayanagi, Quantized conductance through individual rows of suspended gold atoms, Nature 395(6704), 780 (1998)
https://doi.org/10.1038/27399
2 H. S. Sim, H. W. Lee, and K. J. Chang, Even-odd behavior of conductance in monatomic sodium wires, Phys. Rev. Lett. 87(9), 096803 (2001)
https://doi.org/10.1103/PhysRevLett.87.096803
3 V. Rodrigues, J. Bettini, P. C. Silva, and D. Ugarte, Evidence for spontaneous spin-polarized transport in magnetic nanowires, Phys. Rev. Lett. 91(9), 096801 (2003)
https://doi.org/10.1103/PhysRevLett.91.096801
4 C. Untiedt, D. M. T. Dekker, D. Djukic, and J. M. van Ruitenbeek, Absence of magnetically induced fractional quantization in atomic contacts, Phys. Rev. B 69(8), 081401(R) (2004)
5 Y. J. Lee, M. Brandbyge, M. J. Puska, J. Taylor, K. Stokbro, and R. M. Nieminen, Electron transport through monovalent atomic wires, Phys. Rev. B 69(12), 125409 (2004)
https://doi.org/10.1103/PhysRevB.69.125409
6 L. de la Vega, A. Martín-Rodero, A. L. Yeyati, and A. Saúl, Different wavelength oscillations in the conductance of 5 d metal atomic chains, Phys. Rev. B 70(11), 113107 (2004)
https://doi.org/10.1103/PhysRevB.70.113107
7 M. Strange, K. S. Thygesen, and K. W. Jacobsen, Electron transport in a Pt-CO-Pt nanocontact: Density functional theory calculations, Phys. Rev. B 73(12), 125424 (2006)
https://doi.org/10.1103/PhysRevB.73.125424
8 S. Csonka, A. Halbritter, and G. Mihály, Pulling gold nanowires with a hydrogen clamp: Strong interactions of hydrogen molecules with gold nanojunctions, Phys. Rev. B 73(7), 075405 (2006)
https://doi.org/10.1103/PhysRevB.73.075405
9 S. Kaneko, J. Zhang, J. Zhao, and M. Kiguchi, Electronic conductance of platinum atomic junction in a nitrogen atmosphere, J. Phys. Chem. C 7(19), 9903 (2013)
https://doi.org/10.1021/jp401562d
10 T. Konishi, M. Kiguchi, and K. Murakoshi, Electrical conductance of Rh atomic junctions under electrochemical potential control, Phys. Rev. B 81(12), 125422 (2010)
https://doi.org/10.1103/PhysRevB.81.125422
11 F. Q. Xie, F. Huser, F. Pauly, Ch. Obermair, G. Schon, and Th. Schimmel, Conductance of atomic-scale Pb junctions in an electrochemical environment, Phys. Rev. B 82(7), 075417 (2010)
https://doi.org/10.1103/PhysRevB.82.075417
12 T. Nakazumi and M. Kiguchi, Formation of Co atomic wire in hydrogen atmosphere, J. Phys. Chem. Lett. 1(6), 923 (2010)
https://doi.org/10.1021/jz100084a
13 K. S. Thygesen and K. W. Jacobsen, Conduction mechanism in a molecular hydrogen junction, Phys. Rev. Lett. 94(3), 036807 (2005)
https://doi.org/10.1103/PhysRevLett.94.036807
14 M. Kiguchi, R. Stadler, I. S. Kristensen, D. Djukic, and J. M. van Ruitenbeek, Evidence for a single hydrogen molecule connected by an atomic chain, Phys. Rev. Lett. 98(14), 146802 (2007)
https://doi.org/10.1103/PhysRevLett.98.146802
15 R. Matsushita, S. Kaneko, T. Nakazumi, and M. Kiguchi, Effect of metal-molecule junction on electronvibration interaction in single hydrogen molecule junction, Phys. Rev. B 84(24), 245412 (2011)
https://doi.org/10.1103/PhysRevB.84.245412
16 C. Motta, G. Fratesi, and M. I. Trioni, Conductance calculation of hydrogen molecular junctions between Cu electrodes, Phys. Rev. B 87(7), 075415 (2013)
https://doi.org/10.1103/PhysRevB.87.075415
17 W. H. A. Thijssen, M. Strange, J. M. J. Aan de Brugh, and J. M. van Ruitenbeek, Formation and properties of metal-oxygen atomic chains, New J. Phys. 10(3), 033005 (2008)
https://doi.org/10.1088/1367-2630/10/3/033005
18 F. Tavazza, D. T. Smith, L. E. Levine, J. R. Pratt, and A. M. Chaka, Electron transport in gold nanowires: Stable 1-, 2- and 3-dimensional atomic structures and noninteger conduction states, Phys. Rev. Lett. 107(12), 126802 (2011)
https://doi.org/10.1103/PhysRevLett.107.126802
19 I. N. Sivkov, O. O. Brovko, D. I. Bazhanov, and V. S. Stepanyuk, Emergence of high spin polarization of conductance in atomic-size Co-Au contacts, Phys. Rev. B 89(7), 075436 (2014)
https://doi.org/10.1103/PhysRevB.89.075436
20 M. Kumar, K. K. V. Sethu, and J. M. van Ruitenbeek, Molecule-assisted ferromagnetic atomic chain formation, Phys. Rev. B 91(24), 245404 (2015)
https://doi.org/10.1103/PhysRevB.91.245404
21 X. Zheng, Y. Q. Xie, X. Ye, and S. H. Ke, Conductance and spin-filter effects of oxygen-incorporated Au, Cu, and Fe single-atom chains, J. Appl. Phys. 117(4), 043902 (2015)
https://doi.org/10.1063/1.4906439
22 Y. Xie, Q. Li, L. Huang, X. Ye, and S. H. Ke, Conductance of single-atom magnetic junctions: A firstprinciples study, Appl. Phys. Lett. 101(19), 192408 (2012)
https://doi.org/10.1063/1.4766733
23 X. Li, M. Y. Chen, X. Ye, Y. Q. Xie, and S. H. Ke, Origin of the smaller conductances of Rh, Pb, and Co atomic junctions in hydrogen environment, J. Appl. Phys. 117(6), 064310 (2015)
https://doi.org/10.1063/1.4907994
24 Z. Y. Ning, J. S. Qiao, W. Ji, and H. Guo, Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions, Front. Phys. 9(6), 780 (2014)
https://doi.org/10.1007/s11467-014-0453-x
25 G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
26 P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
27 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46(11), 6671 (1992)
https://doi.org/10.1103/PhysRevB.46.6671
28 H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
https://doi.org/10.1103/PhysRevB.13.5188
29 S. H. Ke, H. U. Baranger, and W. Yang, Electron transport through molecules: Self-consistent and nonselfconsistent approaches, Phys. Rev. B 70(8), 085410 (2004)
https://doi.org/10.1103/PhysRevB.70.085410
30 J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)
https://doi.org/10.1103/PhysRevB.63.245407
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed