Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (3): 128501   https://doi.org/10.1007/s11467-016-0649-3
  本期目录
Thermal spin transfer torque in Fe|Ag|YIG multilayers
Hui-Min Tang1, Xing-Tao Jia2(), Shi-Zhuo Wang1
1. 1Department of Physics, Beijing Normal University, Beijing 100875, China
2. 2School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
 全文: PDF(781 KB)  
Abstract

We investigated the thermal spin transfer effect in FM|NM|YIG multilayers using the first principles scattering theory. At room temperature, the spin Seebeck torque TSSE~1.0 μJ/(K·m2) in an Ag|Fe|Ag|YIG multilayer, which is around 40% larger than that estimated from mixing conductance. The quantum effects such as interlayer exchange coupling between FM and YIG could be responsible for the enhancements. Based on the LLG equation, we predict that a temperature bias of ~10 K can reverse the magnetic configurations, circularly, in a multilayer at room temperature.

Key wordsspin Seebeck torque    spin transfer torque    YIG
收稿日期: 2016-09-29      出版日期: 2017-01-03
Corresponding Author(s): Xing-Tao Jia   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(3): 128501.
Hui-Min Tang, Xing-Tao Jia, Shi-Zhuo Wang. Thermal spin transfer torque in Fe|Ag|YIG multilayers. Front. Phys. , 2017, 12(3): 128501.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0649-3
https://academic.hep.com.cn/fop/CN/Y2017/V12/I3/128501
14 J. C.Slonczewski, Initiation of spin-transfer torque by thermal transport from magnons, Phys. Rev. B82(5), 054403 (2010)
https://doi.org/10.1103/PhysRevB.82.054403
15 E.Padrón-Hernández, A.Azevedo, and S. M.Rezende, Amplification of spin waves by thermal spin-transfer torque, Phys. Rev. Lett.107(19), 197203 (2011)
https://doi.org/10.1103/PhysRevLett.107.197203
16 M. B.Jungfleisch, T.An, K.Ando, Y.Kajiwara, K.Uchida, V. I.Vasyuchka, A. V.Chumak, A. A.Serga, E.Saitoh, and B.Hillebrands, Heat-induced damping modification in yttrium iron garnet/platinum heterostructures, Appl. Phys. Lett.102(6), 062417 (2013)
https://doi.org/10.1063/1.4792701
17 L.Lu, Y.Sun, M.Jantz, and M.Wu, Control of ferromagnetic relaxation in magnetic thin films through thermally induced interfacial spin transfer, Phys. Rev. Lett.108(25), 257202 (2012)
https://doi.org/10.1103/PhysRevLett.108.257202
18 S. A.Bender and Y.Tserkovnyak, Thermally driven spin torques in layered magnetic insulators, Phys. Rev. B93(6), 064418 (2016)
https://doi.org/10.1103/PhysRevB.93.064418
19 X.Jia, S.Wang, and M. H.Qin, Enhanced thermal spin transfer in MgO-based double-barrier tunnel junctions, New J. Phys.18(6), 063012 (2016)
https://doi.org/10.1088/1367-2630/18/6/063012
20 M.Weiler, M.Althammer, M.Schreier, J.Lotze, M.Pernpeintner, S.Meyer, H.Huebl, R.Gross, A.Kamra, J.Xiao, Y. T.Chen, H.Jiao, G. E. W.Bauer, and S. T. B.Goennenwein, Experimental test of the spin mixing interface conductivity concept, Phys. Rev. Lett.111(17), 176601 (2013)
https://doi.org/10.1103/PhysRevLett.111.176601
21 A.Pushp, T.Phung, C. T.Rettner, B.Hughes, S.Yang, and S. S. P.Parkin, Giant thermal spin-torque assisted magnetic tunnel junction switching, Proc. Natl. Acad. Sci. USA112(21), 6585 (2015)
https://doi.org/10.1073/pnas.1507084112
22 P.Ogrodnik, G. E. W.Bauer, and K.Xia, Thermally induced dynamics in ultrathin magnetic tunnel junctions, Phys. Rev. B88(2), 024406 (2013)
https://doi.org/10.1103/PhysRevB.88.024406
23 D.Tian, Y.Li, D.Qu, X.Jin, and C. L.Chien, Separation of spin Seebeck effect and anomalous Nernst effect in Co/Cu/YIG, Appl. Phys. Lett.106(21), 212407 (2015)
https://doi.org/10.1063/1.4921927
24 Y.Kajiwara, K.Harii, S.Takahashi, J.Ohe, K.Uchida, M.Mizuguchi, H.Umezawa, H.Kawai, K.Ando, K.Takanashi, S.Maekawa, and E.Saitoh, Transmission of electrical signals by spin-wave interconversion in a magnetic insulator, Nature464(7286), 262 (2010)
https://doi.org/10.1038/nature08876
25 K.Uchida, J.Xiao, H.Adachi, J.Ohe, S.Takahashi, J.Ieda, T.Ota, Y.Kajiwara, H.Umezawa, H.Kawai, G. E. W.Bauer, S.Maekawa, and E.Saitoh, Spin Seebeck insulator, Nat. Mater.9(11), 894 (2010)
https://doi.org/10.1038/nmat2856
1 G. E. W.Bauer, E.Saitoh, and B. J.van Wees, Spin caloritronics, Nat. Mater. 11(5), 391 (2012)
https://doi.org/10.1038/nmat3301
2 M.Hatami, G. E. W.Bauer, Q.Zhang, and P. J.Kelly, Thermal spin-transfer torque in magnetoelectronic devices, Phys. Rev. Lett. 99(6), 066603 (2007)
https://doi.org/10.1103/PhysRevLett.99.066603
3 H.Yu, S.Granville, D. P.Yu, and J. Ph.Ansermet, Evidence for thermal spin-transfer torque, Phys. Rev. Lett. 104(14), 146601 (2010)
https://doi.org/10.1103/PhysRevLett.104.146601
4 M.Hatami, G. E. W.Bauer, Q.Zhang, and P. J.Kelly, Thermoelectric effects in magnetic nanostructures, Phys. Rev. B79(17), 174426 (2009)
https://doi.org/10.1103/PhysRevB.79.174426
5 J.Xiao, G. E. W.Bauer, K. C.Uchida, E.Saitoh, and S.Maekawa, Theory of magnon-driven spin Seebeck effect, Phys. Rev. B81(21), 214418 (2010)
https://doi.org/10.1103/PhysRevB.81.214418
6 Z.Yuan, S.Wang, and K.Xia, Thermal spin-transfer torques on magnetic domain walls, Solid State Commun. 150(11–12), 548 (2010)
https://doi.org/10.1016/j.ssc.2009.09.034
7 A. A.Kovalev and Y.Tserkovnyak, Thermoelectric spin transfer in textured magnets, Phys. Rev. B80(10), 100408 (2009)
https://doi.org/10.1103/PhysRevB.80.100408
8 G. E. W.Bauer, S.Bretzel, A.Brataas, and Y.Tserkovnyak, Nanoscale magnetic heat pumps and engines, Phys. Rev. B81(2), 024427 (2010)
https://doi.org/10.1103/PhysRevB.81.024427
9 A. A.Kovalev and Y.Tserkovnyak, Magnetocaloritronic nanomachines, Solid State Commun. 150(11–12), 500 (2010)
https://doi.org/10.1016/j.ssc.2009.11.012
10 X.Jia, K.Xia, and G. E. W.Bauer, Thermal spin transfer in Fe-MgO-Fe tunnel junctions, Phys. Rev. Lett. 107(17), 176603 (2011)
https://doi.org/10.1103/PhysRevLett.107.176603
11 X.Jia and K.Xia, Thermal electric effects in Fe-GaAs- Fe tunnel junctions, AIP Adv. 2(4), 041411 (2012)
https://doi.org/10.1063/1.4773464
12 S. Z.Wang, K.Xia, and G. E. W.Bauer, Thermoelectricity and disorder of FeCo/MgO/FeCo magnetic tunnel junctions, Phys. Rev. B90(22), 224406 (2014)
https://doi.org/10.1103/PhysRevB.90.224406
13 X.Jia and K.Xia, Electric and thermo spin transfer torques in Fe/Vacuum/Fe tunnel junction, Front. Phys.9(6), 768 (2014)
https://doi.org/10.1007/s11467-013-0375-z
26 C. W.Sandweg, Y.Kajiwara, A. V.Chumak, A. A.Serga, V. I.Vasyuchka, M. B.Jungfleisch, E.Saitoh, and B.Hillebrands, Spin pumping by parametrically excited exchange magnons, Phys. Rev. Lett.106(21), 216601 (2011)
https://doi.org/10.1103/PhysRevLett.106.216601
27 B.Heinrich, C.Burrowes, E.Montoya, B.Kardasz, E.Girt, Y. Y.Song, Y.Sun, and M. Z.Wu, Spin pumping at the magnetic insulator (YIG)/normal metal (Au) interfaces, Phys. Rev. Lett.107(6), 066604 (2011)
https://doi.org/10.1103/PhysRevLett.107.066604
28 H.Kurebayashi, O.Dzyapko, V. E.Demidov, D.Fang, A. J.Ferguson, and S. O.Demokritov, Controlled enhancement of spin-current emission by three-magnon splitting, Nat. Mater.10(9), 660 (2011)
https://doi.org/10.1038/nmat3053
29 E.Padrón-Hernández, A.Azevedo, and S. M.Rezende, Amplification of spin waves by thermal spin-transfer torque, Phys. Rev. Lett.107(19), 197203 (2011)
https://doi.org/10.1103/PhysRevLett.107.197203
30 V.Castel, N.Vlietstra, J.Ben Youssef, and B. J.van Wees, Platinum thickness dependence of the inverse spin-Hall voltage from spin pumping in a hybrid yttrium iron garnet/platinum system, Appl. Phys. Lett.101(13), 132414 (2012)
https://doi.org/10.1063/1.4754837
31 S. Y.Huang, X.Fan, D.Qu, Y. P.Chen, W. G.Wang, J.Wu, T. Y.Chen, J. Q.Xiao, and C. L.Chien, Transport magnetic proximity effects in platinum, Phys. Rev. Lett. 109(10), 107204 (2012)
https://doi.org/10.1103/PhysRevLett.109.107204
32 H.Nakayama, M.Althammer, Y. T.Chen, K.Uchida, Y.Kajiwara, D.Kikuchi, T.Ohtani, S.Geprägs, M.Opel, S.Takahashi, R.Gross, G. E. W.Bauer, S. T. B.Goennenwein, and E.Saitoh, Spin Hall magnetoresistance induced by a nonequilibrium proximity effect, Phys. Rev. Lett. 110(20), 206601 (2013)
https://doi.org/10.1103/PhysRevLett.110.206601
33 Y.Sun, Y. Y.Song, H.Chang, M.Kabatek, M.Jantz, W.Schneider, M.Wu, H.Schultheiss, and A.Hoffmann, Growth and ferromagnetic resonance properties of nanometer-thick yttrium iron garnet films, Appl. Phys. Lett. 101(15), 152405 (2012)
https://doi.org/10.1063/1.4759039
34 O.d’Allivy Kelly, A.Anane, R.Bernard, J.Ben Youssef, C.Hahn, A. H.Molpeceres, C.Carretero, E.Jacquet, C.Deranlot, P.Bortolotti, R.Lebourgeois, J. C.Mage, G.de Loubens, O.Klein, V.Cros, and A.Fert, Inverse spin Hall effect in nanometer-thick yttrium iron garnet/Pt system, Appl. Phys. Lett. 103(8), 082408 (2013)
https://doi.org/10.1063/1.4819157
35 T.Liu, H.Chang, V.Vlaminck, Y.Sun, M.Kabatek, A.Hoffmann, L.Deng, and M.Wu, Ferromagnetic resonance of sputtered yttrium iron garnet nanometer films, J. Appl. Phys. 115(17), 17A501 (2014)
36 H. L.Wang, C. H.Du, Y.Pu, R.Adur, P. C.Hammel, and F. Y.Yang, Scaling of spin hall angle in 3d, 4d, and 5d metals from Y3Fe5O12/Metal spin pumping, Phys. Rev. Lett. 112(19), 197201 (2014)
https://doi.org/10.1103/PhysRevLett.112.197201
37 H. C.Chang, P.Li, W.Zhang, T.Liu, A.Hoffmann, L. J.Deng, and M. Z.Wu, Nanometer-thick yttrium iron garnet films with extremely low damping, IEEE Magn. Lett. 5, 1 (2014)
https://doi.org/10.1109/LMAG.2014.2350958
38 J. Z.Sun, Spin-current interaction with a monodomain magnetic body: A model study, Phys. Rev. B62(1), 570 (2000)
https://doi.org/10.1103/PhysRevB.62.570
39 J.Zhang, M.Bachman, M.Czerner, and C.Heiliger, Thermal transport and nonequilibrium temperature drop across a magnetic tunnel junction, Phys. Rev. Lett. 115(3), 037203 (2015)
https://doi.org/10.1103/PhysRevLett.115.037203
40 A.Brataas, Y.Tserkovnyak, and G. E. W.Bauer, Magnetization dissipation in ferromagnets from scattering theory, Phys. Rev. B84(5), 054416 (2011)
https://doi.org/10.1103/PhysRevB.84.054416
41 Y.Tserkovnyak, A.Brataas, and G. E. W.Bauer, Spin pumping and magnetization dynamics in metallic multilayers, Phys. Rev. B66(22), 224403 (2002)
https://doi.org/10.1103/PhysRevB.66.224403
42 Y.Tserkovnyak, A.Brataas, and G. E. W.Bauer, Enhanced Gilbert damping in thin ferromagnetic films, Phys. Rev. Lett. 88(11), 117601 (2002)
https://doi.org/10.1103/PhysRevLett.88.117601
43 O.Gunnarsson, O.Jepsen, and O. K.Andersen, Selfconsistent impurity calculations in the atomic-spheres approximation, Phys. Rev. B27(12), 7144 (1983)
https://doi.org/10.1103/PhysRevB.27.7144
44 O. K.Andersen and O.Jepsen, Explicit, first-principles tight-binding theory, Phys. Rev. Lett. 53(27), 2571 (1984)
https://doi.org/10.1103/PhysRevLett.53.2571
45 O.Jepsen, O. K.Andersen, and D.Glötzel, Highlights of Condensed Matter Theory, Amsterdam: North- Holland, 1985
46 S.Wang, Y.Xu, and K.Xia, First-principles study of spin-transfer torques in layered systems with noncollinear magnetization, Phys. Rev. B77(18), 184430 (2008)
https://doi.org/10.1103/PhysRevB.77.184430
47 X.Jia, K.Liu, K.Xia, and G. E. W.Bauer, Spin transfer torque on magnetic insulators, EPL96(1), 17005 (2011)
https://doi.org/10.1209/0295-5075/96/17005
48 K. M. D.Hals, A.Brataas, and Y.Tserkovnyak, Scattering theory of charge-current induced magnetization dynamics, EPL90(4), 47002 (2010)
https://doi.org/10.1209/0295-5075/90/47002
49 P.Bruno and C.Chappert, Oscillatory coupling between ferromagnetic layers separated by a nonmagnetic metal spacer, Phys. Rev. Lett. 67(12), 1602 (1991)
https://doi.org/10.1103/PhysRevLett.67.1602
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed