1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 3. Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190, China 4. Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
Graphene has attracted extensive research interest in recent years because of its fascinating physical properties and its potential for various applications. The band structure or electronic properties of graphene are very sensitive to its geometry, size, and edge structures, especially when the size of graphene is below the quantum confinement limit. Graphene nanoribbons (GNRs) can be used as a model system to investigate such structure-sensitive parameters. In this review, we examine the fabrication of GNRs via both top-down and bottom-up approaches. The edge-related electronic and transport properties of GNRs are also discussed.
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
2
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
https://doi.org/10.1038/nature04233
3
M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys. 2(9), 620 (2006)
4
J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, Exceptional ballistic transport in epitaxial graphene nanoribbons, Nature 506(7488), 349 (2014)
https://doi.org/10.1038/nature12952
5
C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene, Science 312(5777), 1191 (2006)
https://doi.org/10.1126/science.1125925
6
M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, Approaching the Dirac point in high-mobility multilayer epitaxial graphene, Phys. Rev. Lett. 101(26), 267601 (2008)
https://doi.org/10.1103/PhysRevLett.101.267601
7
M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98(20), 206805 (2007)
https://doi.org/10.1103/PhysRevLett.98.206805
8
L. Jiao, X. Wang, G. Diankov, H. Wang, and H. Dai, Facile synthesis of high-quality graphene nanoribbons, Nat. Nanotechnol. 5(5), 321 (2010)
https://doi.org/10.1038/nnano.2010.54
9
D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature 458(7240), 872 (2009)
https://doi.org/10.1038/nature07872
10
J. W. Bai, X. Zhong, S. Jiang, Y. Huang, and X. F. Duan, Graphene nanomesh, Nat. Nanotechnol. 5(3), 190 (2010)
https://doi.org/10.1038/nnano.2010.8
11
X. Liang, Y. S. Jung, S. Wu, A. Ismach, D. L. Olynick, S. Cabrini, and J. Bokor, Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography, Nano Lett. 10(7), 2454 (2010)
https://doi.org/10.1021/nl100750v
12
L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, Chaotic Dirac billiard in graphene quantum dots, Science 320(5874), 356 (2008)
https://doi.org/10.1126/science.1154663
13
B. Song, G. F. Schneider, Q. Xu, G. Pandraud, C. Dekker, and H. Zandbergen, Atomic-scale electronbeam sculpting of near-defect-free graphene nanostructures, Nano Lett. 11(6), 2247 (2011)
https://doi.org/10.1021/nl200369r
14
A. Sinitskii and J. M. Tour, Patterning graphene through the self-assembled templates: Toward periodic two-dimensional graphene nanostructures with semiconductor properties, J. Am. Chem. Soc. 132(42), 14730 (2010)
https://doi.org/10.1021/ja105426h
15
L. Liu, Y. Zhang, W. Wang, C. Gu, X. Bai, and E. Wang, Nanosphere lithography for the fabrication of ultranarrow graphene nanoribbons and on-chip bandgap tuning of graphene, Adv. Mater. 23(10), 1246 (2011)
https://doi.org/10.1002/adma.201003847
16
M. Kim, N. S. Safron, E. Han, M. S. Arnold, and P. Gopalan, Fabrication and characterization of largearea, semiconducting nanoperforated graphene materials, Nano Lett. 10(4), 1125 (2010)
https://doi.org/10.1021/nl9032318
17
J. G. Son, M. Son, K. J. Moon, B. H. Lee, J. M. Myoung, M. S. Strano, M. H. Ham, and C. A. Ross, Sub- 10 nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography, Adv. Mater. 25(34), 4723 (2013)
https://doi.org/10.1002/adma.201300813
18
A. Sinitskii and J. M. Tour, Patterning graphene nanoribbons using copper oxide nanowires, Appl. Phys. Lett. 100(10), 103106 (2012)
https://doi.org/10.1063/1.3692744
19
L. Liao, J. Bai, R. Cheng, Y. C. Lin, S. Jiang, Y. Huang, and X. Duan, Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics, Nano Lett. 10(5), 1917 (2010)
https://doi.org/10.1021/nl100840z
20
L. Liao, J. Bai, Y. C. Lin, Y. Qu, Y. Huang, and X. Duan, High-performance top-gated graphenenanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics, Adv. Mater. 22(17), 1941 (2010)
https://doi.org/10.1002/adma.200904415
21
L. Liao, Y. C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, High-speed graphene transistors with a self-aligned nanowire gate,Nature 467(7313), 305 (2010)
https://doi.org/10.1038/nature09405
22
W. Xu, H. K. Seo, S. Y. Min, H. Cho, T. S. Lim, C. Y. Oh, Y. Lee, and T. W. Lee, Rapid fabrication of designable large-scale aligned graphene nanoribbons by electro-hydrodynamic nanowire lithography, Adv. Mater. 26(21), 3459 (2014)
https://doi.org/10.1002/adma.201306081
23
S. Park, D. H. Lee, J. Xu, B. Kim, S. W. Hong, U. Jeong, T. Xu, and T. P. Russell, Macroscopic 10-terabit-persquare- inch arrays from block copolymers with lateral order, Science 323(5917), 1030 (2009)
https://doi.org/10.1126/science.1168108
24
Z. Huo, C. K. Tsung, W. Huang, M. Fardy, R. Yan, X. Zhang, Y. Li, and P. Yang, Self-organized ultrathin oxide nanocrystals, Nano Lett. 9(3), 1260 (2009)
https://doi.org/10.1021/nl900209w
25
J. D. Holmes, K. P. Johnston, R. Christopher Doty, and B. A. Korgel, Control of thickness and orientation of solution-grown silicon nanowires, Science 287(5457), 1471 (2000)
https://doi.org/10.1126/science.287.5457.1471
26
C. Wang, Y. J. Hu, C. M. Lieber, and S. H. Sun, Ultrathin Au nanowires and their transport properties, J. Am. Chem. Soc. 130(28), 8902 (2008)
https://doi.org/10.1021/ja803408f
27
X. Lu, M. S. Yavuz, H. Y. Tuan, B. A. Korgel, and Y. Xia, Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction, J. Am. Chem. Soc. 130(28), 8900 (2008)
https://doi.org/10.1021/ja803343m
28
J. W. Bai, X. F. Duan, and Y. Huang, Rational fabrication of graphene nanoribbons using a nanowire etch mask, Nano Lett. 9(5), 2083 (2009)
https://doi.org/10.1021/nl900531n
29
T. O. Wehling, S. Yuan, A. I. Lichtenstein, A. K. Geim, and M. I. Katsnelson, Resonant scattering by realistic impurities in graphene, Phys. Rev. Lett. 105(5), 056802 (2010)
https://doi.org/10.1103/PhysRevLett.105.056802
30
L. C. Campos, V. R. Manfrinato, J. D. Sanchez- Yamagishi, J. Kong, and P. Jarillo-Herrero, Anisotropic etching and nanoribbon formation in single-layer graphene, Nano Lett. 9(7), 2600 (2009)
https://doi.org/10.1021/nl900811r
31
S. S. Datta, D. R. Strachan, S. M. Khamis, and A. T. C. Johnson, Crystallographic etching of few-layer graphene, Nano Lett. 8(7), 1912 (2008)
https://doi.org/10.1021/nl080583r
32
L. Ci, Z. Xu, L. Wang, W. Gao, F. Ding, K. F. Kelly, B. I. Yakobson, and P. M. Ajayan, Controlled nanocutting of graphene, Nano Res. 1(2), 116 (2008)
https://doi.org/10.1007/s12274-008-8020-9
33
L. Ci, L. Song, D. Jariwala, A. L. ElÃas, W. Gao, M. Terrones, and P. M. Ajayan, Graphene shape control by multistage cutting and transfer, Adv. Mater. 21(44), 4487 (2009)
https://doi.org/10.1002/adma.200900942
34
R. Yang, L. Zhang, Y. Wang, Z. Shi, D. Shi, H. Gao, E. Wang, and G. Zhang, An anisotropic etching effect in the graphene Basal plane, Adv. Mater. 22(36), 4014 (2010)
https://doi.org/10.1002/adma.201000618
35
Z. Shi, R. Yang, L. Zhang, Y. Wang, D. Liu, D. Shi, E. Wang, and G. Zhang, Patterning graphene with zigzag edges by self-aligned anisotropic etching, Adv. Mater. 23(27), 3061 (2011)
https://doi.org/10.1002/adma.201100633
36
G. Wang, S. Wu, T. Zhang, P. Chen, X. Lu, S. Wang, D. Wang, K. Watanabe, T. Taniguchi, D. Shi, R. Yang, and G. Zhang, Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching, Appl. Phys. Lett. 109(5), 053101 (2016)
https://doi.org/10.1063/1.4959963
37
L. Weng, L. Zhang, Y. P. Chen, and L. P. Rokhinson, Atomic force microscope local oxidation nanolithography of graphene, Appl. Phys. Lett. 93(9), 093107 (2008)
https://doi.org/10.1063/1.2976429
38
G. Lu, X. Zhou, H. Li, Z. Yin, B. Li, L. Huang, F. Boey, and H. Zhang, Nanolithography of single-layer graphene oxide films by atomic force microscopy, Langmuir 26(9), 6164 (2010)
https://doi.org/10.1021/la101077t
39
K. Zhang, Q. Fu, N. Pan, X. Yu, J. Liu, Y. Luo, X. Wang, J. Yang, and J. Hou, Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography, Nat. Commun. 3, 1194 (2012)
https://doi.org/10.1038/ncomms2200
40
S. Masubuchi, M. Ono, K. Yoshida, K. Hirakawa, and T. Machida, Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope, Appl. Phys. Lett. 94(8), 082107 (2009)
https://doi.org/10.1063/1.3089693
41
L. Tapasztó, G. Dobrik, P. Lambin, and L. P. Biró, Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography, Nat. Nanotechnol. 3(7), 397 (2008)
https://doi.org/10.1038/nnano.2008.149
42
M. D. Fischbein and M. Drndić, Electron beam nanosculpting of suspended graphene sheets, Appl. Phys. Lett. 93(11), 113107 (2008)
https://doi.org/10.1063/1.2980518
43
D. C. Bell, M. C. Lemme, L. A. Stern, J. R. Williams, and C. M. Marcus, Precision cutting and patterning of graphene with helium ions, Nanotechnology 20(45), 455301 (2009)
https://doi.org/10.1088/0957-4484/20/45/455301
44
D. Winston, V. R. Manfrinato, S. M. Nicaise, L. L. Cheong, H. Duan, D. Ferranti, J. Marshman, S. McVey, L. Stern, J. Notte, and K. K. Berggren, Neon ion beam lithography (NIBL), Nano Lett. 11(10), 4343 (2011)
https://doi.org/10.1021/nl202447n
45
A. Lerf, H. He, M. Forster, and J. Klinowski, Structure of graphite oxide revisited, J. Phys. Chem. B 102(23), 4477 (1998)
https://doi.org/10.1021/jp9731821
46
L. Jiao, L. Zhang, L. Ding, J. Liu, and H. Dai, Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes, Nano Res. 3(6), 387 (2010)
https://doi.org/10.1007/s12274-010-1043-z
47
L. Xie, H. Wang, C. Jin, X. Wang, L. Jiao, K. Suenaga, and H. Dai, Graphene nanoribbons from unzipped carbon nanotubes: Atomic structures, Raman spectroscopy, and electrical properties, J. Am. Chem. Soc. 133(27), 10394 (2011)
https://doi.org/10.1021/ja203860a
48
X. Wang, Y. Ouyang, L. Jiao, H. Wang, L. Xie, J. Wu, J. Guo, and H. Dai, Graphene nanoribbons with smooth edges behave as quantum wires, Nat. Nanotechnol. 6(9), 563 (2011)
https://doi.org/10.1038/nnano.2011.138
49
Y. W. Son, M. L. Cohen, and S. G. Louie, Half-metallic graphene nanoribbons, Nature 444(7117), 347 (2006)
https://doi.org/10.1038/nature05180
50
B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, Spin qubits in graphene quantum dots,Nat. Phys. 3(3), 192 (2007)
51
X. Yang, X. Dou, A. Rouhanipour, L. Zhi, H. J. Rader, and K. Mullen, Two-dimensional graphene nanoribbons, J. Am. Chem. Soc. 130(13), 4216 (2008)
https://doi.org/10.1021/ja710234t
52
A. Narita, X. Feng, Y. Hernandez, S. A. Jensen, M. Bonn, H. Yang, I. A. Verzhbitskiy, C. Casiraghi, M. R. Hansen, A. H. Koch, G. Fytas, O. Ivasenko, B. Li, K. S. Mali, T. Balandina, S. Mahesh, S. De Feyter, and K. Mullen, Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons, Nat. Chem. 6(2), 126 (2013)
https://doi.org/10.1038/nchem.1819
53
J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Mullen, and R. Fasel, Atomically precise bottom-up fabrication of graphene nanoribbons, Nature 466(7305), 470 (2010)
https://doi.org/10.1038/nature09211
54
P. Ruffieux, S. Wang, B. Yang, C. Sanchez-Sanchez, J. Liu, T. Dienel, L. Talirz, P. Shinde, C. A. Pignedoli, D. Passerone, T. Dumslaff, X. Feng, K. Mullen, and R. Fasel, On-surface synthesis of graphene nanoribbons with zigzag edge topology, Nature 531(7595), 489 (2016)
https://doi.org/10.1038/nature17151
55
S. Blankenburg, J. Cai, P. Ruffieux, R. Jaafar, D. Passerone, X. Feng, K. Müllen, R. Fasel, and C. A. Pignedoli, Intraribbon heterojunction formation in ultranarrow graphene nanoribbons, ACS Nano 6(3), 2020 (2012)
https://doi.org/10.1021/nn203129a
56
J. Cai, C. A. Pignedoli, L. Talirz, P. Ruffieux, H. Sode, L. Liang, V. Meunier, R. Berger, R. Li, X. Feng, K. Mullen, and R. Fasel, Graphene nanoribbon heterojunctions, Nat. Nanotechnol. 9(11), 896 (2014)
https://doi.org/10.1038/nnano.2014.184
57
Y. C. Chen, T. Cao, C. Chen, Z. Pedramrazi, D. Haberer, D. G. de Oteyza, F. R. Fischer, S. G. Louie, and M. F. Crommie, Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions, Nat. Nanotechnol. 10(2), 156 (2015)
https://doi.org/10.1038/nnano.2014.307
58
P. Ruffieux, J. Cai, N. C. Plumb, L. Patthey, D. Prezzi, A. Ferretti, E. Molinari, X. Feng, K. Müllen, C. A. Pignedoli, and R. Fasel, Electronic structure of atomically precise graphene nanoribbons, ACS Nano 6, 6930 (2012)
https://doi.org/10.1021/nn3021376
59
Y.C. Chen, D. G. de Oteyza, Z. Pedramrazi, C. Chen, F. R. Fischer, and M. F. Crommie, Tuning the band gap of graphene nanoribbons synthesized from molecular precursors, ACS Nano 7(7), 6123 (2013)
https://doi.org/10.1021/nn401948e
60
T. H. Vo, M. Shekhirev, D. A. Kunkel, M. D. Morton, E. Berglund, L. Kong, P. M. Wilson, P. A. Dowben, A. Enders, and A. Sinitskii, Large-scale solution synthesis of narrow graphene nanoribbons, Nat. Commun. 5, 3189 (2014)
https://doi.org/10.1038/ncomms4189
61
X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 324(5932), 1312 (2009)
https://doi.org/10.1126/science.1171245
62
M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio- Roy, B. Zhang, X. Wu, C. Berger, and W. A. de Heer, Scalable templated growth of graphene nanoribbons on SiC, Nat. Nanotechnol. 5(10), 727 (2010)
https://doi.org/10.1038/nnano.2010.192
63
Q. Huang, J. J. Kim, G. Ali, and S. O. Cho, Widthtunable graphene nanoribbons on a SiC substrate with a controlled step height, Adv. Mater. 25(8), 1144 (2013)
https://doi.org/10.1002/adma.201202746
64
M. S. Nevius, F. Wang, C. Mathieu, N. Barrett, A. Sala, T. O. Mentes, A. Locatelli, and E. H. Conrad, The bottom-up growth of edge specific graphene nanoribbons, Nano Lett. 14(11), 6080 (2014)
https://doi.org/10.1021/nl502942z
65
K. Hayashi, S. Sato, M. Ikeda, C. Kaneta, and N. Yokoyama, Selective graphene formation on Copper twin crystals,J. Am. Chem. Soc. 134(30), 12492 (2012)
https://doi.org/10.1021/ja300811p
66
T. Kato and R. Hatakeyama, Site- and alignmentcontrolled growth of graphene nanoribbons from nickel nanobars, Nat. Nanotechnol. 7(10), 651 (2012)
https://doi.org/10.1038/nnano.2012.145
67
I. Martin-Fernandez, D. Wang, and Y. Zhang, Direct growth of graphene nanoribbons for large-scale device fabrication, Nano Lett. 12(12), 6175 (2012)
https://doi.org/10.1021/nl302993m
68
H. Ago, I. Tanaka, Y. Ogawa, R. M. Yunus, M. Tsuji, and H. Hibino, Lattice-oriented catalytic growth of graphene nanoribbons on heteroepitaxial nickel films, ACS Nano 7(12), 10825 (2013)
https://doi.org/10.1021/nn405122r
69
R. M. Jacobberger, B. Kiraly, M. Fortin-Deschenes, P. L. Levesque, K. M. McElhinny, G. J. Brady, R. Rojas Delgado, S. Singha Roy, A. Mannix, M. G. Lagally, P. G. Evans, P. Desjardins, R. Martel, M. C. Hersam, N. P. Guisinger, and M. S. Arnold, Direct oriented growth of armchair graphene nanoribbons on germanium, Nat. Commun. 6, 8006 (2015)
https://doi.org/10.1038/ncomms9006
70
X. Lu, W. Yang, S. Wang, S. Wu, P. Chen, J. Zhang, J. Zhao, J. Meng, G. Xie, D. Wang, G. Wang, T. T. Zhang, K. Watanabe, T. Taniguchi, R. Yang, D. Shi, and G. Zhang, Graphene nanoribbons epitaxy on boron nitride, Appl. Phys. Lett. 108(11), 113103 (2016)
https://doi.org/10.1063/1.4943940
71
M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, Peculiar localized state at zigzag graphite edge, J. Phys. Soc. Jpn. 65(7), 1920 (1996)
https://doi.org/10.1143/JPSJ.65.1920
72
K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B 54(24), 17954 (1996)
https://doi.org/10.1103/PhysRevB.54.17954
73
L. Brey and H. A. Fertig, Electronic states of graphene nanoribbons studied with the Dirac equation, Phys. Rev. B 73(23), 235411 (2006)
https://doi.org/10.1103/PhysRevB.73.235411
74
M. Wimmer, A. R. Akhmerov, and F. Guinea, Robustness of edge states in graphene quantum dots, Phys. Rev. B 82(4), 045409 (2010)
https://doi.org/10.1103/PhysRevB.82.045409
75
K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Electronic and magnetic properties of nanographite ribbons, Phys. Rev. B 59(12), 8271 (1999)
https://doi.org/10.1103/PhysRevB.59.8271
K. Wakabayashi, S. Okada, R. Tomita, S. Fujimoto, and Y. Natsume, Edge states and flat bands of graphene nanoribbons with edge modification, J. Phys. Soc. Jpn. 79(3), 034706 (2010)
https://doi.org/10.1143/JPSJ.79.034706
V. Barone, O. Hod, and G. E. Scuseria, Electronic structure and stability of semiconducting graphene nanoribbons, Nano Lett. 6(12), 2748 (2006)
https://doi.org/10.1021/nl0617033
Z. Klusek, Z. Waqar, E. A. Denisov, T. N. Kompaniets, I. V. Makarenko, A. N. Titkov, and A. S. Bhatti, Observations of local electron states on the edges of the circular pits on hydrogen-etched graphite surface by scanning tunneling spectroscopy, Appl. Surf. Sci. 161(3–4), 508 (2000)
https://doi.org/10.1016/S0169-4332(00)00374-3
82
Y. Kobayashi, K.i. Fukui, T. Enoki, K. Kusakabe, and Y. Kaburagi, Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy, Phys. Rev. B 71, 193406 (2005)
https://doi.org/10.1103/PhysRevB.71.193406
83
Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, and H. Fukuyama, Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges, Phys. Rev. B 73(8), 085421 (2006)
https://doi.org/10.1103/PhysRevB.73.085421
84
K. A. Ritter and J. W. Lyding, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons, Nat. Mater. 8(3), 235 (2009)
https://doi.org/10.1038/nmat2378
85
J. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Electronic structure of atomically resolved carbon nanotubes, Nature 391(6662), 59 (1998)
https://doi.org/10.1038/34139
86
G. Z. Magda, X. Jin, I. Hagymasi, P. Vancso, Z. Osvath, P. Nemes-Incze, C. Hwang, L. P. Biro, and L. Tapaszto, Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons, Nature 514(7524), 608 (2014)
https://doi.org/10.1038/nature13831
87
J. Jung and A. H. MacDonald, Carrier density and magnetism in graphene zigzag nanoribbons, Phys. Rev. B 79(23), 235433 (2009)
https://doi.org/10.1103/PhysRevB.79.235433
88
M. Golor, T. C. Lang, and S. Wessel, Quantum Monte Carlo studies of edge magnetism in chiral graphene nanoribbons, Phys. Rev. B 87(15), 155441 (2013)
https://doi.org/10.1103/PhysRevB.87.155441
89
K. Wakabayashi and M. Sigrist, Zero-conductance resonances due to flux states in nanographite ribbon junctions, Phys. Rev. Lett. 84(15), 3390 (2000)
https://doi.org/10.1103/PhysRevLett.84.3390
90
A. Rycerz, J. Tworzydło, and C. W. J. Beenakker, Valley filter and valley valve in graphene, Nat. Phys. 3(3), 172 (2007)
91
A. R. Akhmerov, J. H. Bardarson, A. Rycerz, and C. W. J. Beenakker, Theory of the valley-valve effect in graphene nanoribbons, Phys. Rev. B 77(20), 205416 (2008)
https://doi.org/10.1103/PhysRevB.77.205416
K. Wakabayashi, Y. Takane, and M. Sigrist, Perfectly conducting channel and universality crossover in disordered graphene nanoribbons, Phys. Rev. Lett. 99(3), 036601 (2007)
https://doi.org/10.1103/PhysRevLett.99.036601
S. Adam, S. Cho, M. S. Fuhrer, and S. Das Sarma, Density Inhomogeneity driven percolation metal-insulator transition and dimensional crossover in graphene nanoribbons, Phys. Rev. Lett. 101(4), 046404 (2008)
https://doi.org/10.1103/PhysRevLett.101.046404
M. Yamamoto, Y. Takane, and K. Wakabayashi, Nearly perfect single-channel conduction in disordered armchair nanoribbons, Phys. Rev. B 79(12), 125421 (2009)
https://doi.org/10.1103/PhysRevB.79.125421
98
M. Evaldsson, I. V. Zozoulenko, H. Xu, and T. Heinzel, Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons, Phys. Rev. B 78(16), 161407 (2008)
https://doi.org/10.1103/PhysRevB.78.161407
H. Suzuura and T. Ando, Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice, Phys. Rev. Lett. 89(26), 266603 (2002)
https://doi.org/10.1103/PhysRevLett.89.266603
101
K. Wakabayashi, Y. Takane, and M. Sigrist, Perfectly conducting channel and universality crossover in disordered graphene nanoribbons, Phys. Rev. Lett. 99(3), 036601 (2007)
https://doi.org/10.1103/PhysRevLett.99.036601
102
K. Wakabayashi and T. Aoki, Electrical conductance of zigzag nanographite ribbons with locally applied gate voltage, Int. J. Mod. Phys. B 16(32), 4897 (2002)
https://doi.org/10.1142/S0217979202014917
103
E. R. Mucciolo, A. H. Castro Neto, and C. H. Lewenkopf, Conductance quantization and transport gaps in disordered graphene nanoribbons, Phys. Rev. B 79(7), 075407 (2009)
https://doi.org/10.1103/PhysRevB.79.075407
104
Z. Qiao, X. Li, W. K. Tse, H. Jiang, Y. Yao, and Q. Niu, Topological phases in gated bilayer graphene: Effects of Rashba spin-orbit coupling and exchange field, Phys. Rev. B 87(12), 125405 (2013)
https://doi.org/10.1103/PhysRevB.87.125405
105
Z. Qiao, S. A. Yang, B. Wang, Y. Yao, and Q. Niu, Spinpolarized and valley helical edge modes in graphene nanoribbons, Phys. Rev. B 84(3), 035431 (2011)
https://doi.org/10.1103/PhysRevB.84.035431
106
Z. Qiao, W. Ren, H. Chen, L. Bellaiche, Z. Zhang, A. H. Macdonald, and Q. Niu, Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator, Phys. Rev. Lett. 112(11), 116404 (2014)
https://doi.org/10.1103/PhysRevLett.112.116404
107
N. Tombros, A. Veligura, J. Junesch, M. H. D. Guimarães, I. J. Vera-Marun, H. T. Jonkman, and B. J. van Wees, Quantized conductance of a suspended graphene nanoconstriction, Nat. Phys. 7(9), 697 (2011)
108
D. K. Ki and A. F. Morpurgo, Crossover from coulomb blockade to quantum Hall effect in suspended graphene nanoribbons, Phys. Rev. Lett. 108(26), 266601 (2012)
https://doi.org/10.1103/PhysRevLett.108.266601
109
C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Boron nitride substrates for highquality graphene electronics, Nat. Nanotechnol. 5(10), 722 (2010)
https://doi.org/10.1038/nnano.2010.172