Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (6): 120507   https://doi.org/10.1007/s11467-017-0659-9
  本期目录
Double-temperature ratchet model and current reversal of coupled Brownian motors
Chen-Pu Li1,2,Hong-Bin Chen3,4,Zhi-Gang Zheng3,4()
1. Department of Physics, Beijing Normal University, Beijing 100875, China
2. College of Science, Hebei University of Architecture, Zhangjiakou 075000, China
3. Institute of Systems Science (ISS), Huaqiao University, Xiamen 361021, China
4. College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
 全文: PDF(1053 KB)  
Abstract

On the basis of the transport features and experimental phenomena observed in studies of molecular motors, we propose a double-temperature ratchet model of coupled motors to reveal the dynamical mechanism of cooperative transport of motors with two heads, where the interactions and asynchrony between two motor heads are taken into account. We investigate the collective unidirectional transport of coupled system and find that the direction of motion can be reversed under certain conditions. Reverse motion can be achieved by modulating the coupling strength, coupling free length, and asymmetric coefficient of the periodic potential, which is understood in terms of the effective potential theory. The dependence of the directed current on various parameters is studied systematically. Directed ransport of coupled Brownian motors can be manipulated and optimized by adjusting the pulsation period or the phase shift of the pulsation temperature.

Key wordscoupled Brownian motors    ratchet model    effective potential    noise
收稿日期: 2016-11-25      出版日期: 2017-04-13
Corresponding Author(s): Zhi-Gang Zheng   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(6): 120507.
Chen-Pu Li,Hong-Bin Chen,Zhi-Gang Zheng. Double-temperature ratchet model and current reversal of coupled Brownian motors. Front. Phys. , 2017, 12(6): 120507.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0659-9
https://academic.hep.com.cn/fop/CN/Y2017/V12/I6/120507
1 P. Reimann and M. Evstigneev, Pulsating potential ratchet, Europhys. Lett. 78(5), 50004 (2007)
https://doi.org/10.1209/0295-5075/78/50004
2 F. Marchesoni, Transport properties in disordered ratchet potentials, Phys. Rev. E 56(3), 2492 (1997)
https://doi.org/10.1103/PhysRevE.56.2492
3 J. D. Bao and Y. Z. Zhuo, Biasing fluctuation model for directional stepping motion of molecular motor, Chin. Sci. Bull. 43(22), 1879 (1998)
https://doi.org/10.1007/BF02883463
4 P. Reimann, Brownian motors: Noisy transport far from equilibrium, Phys. Rep. 361(2–4), 57 (2002)
https://doi.org/10.1016/S0370-1573(01)00081-3
5 O. M. Braun, R. Ferrando, and G. E. Tommei, Stimulated diffusion of an adsorbed dimer, Phys. Rev. E 68(5), 051101 (2003)
https://doi.org/10.1103/PhysRevE.68.051101
6 S. Gonçalves, C. Fusco, A. R. Bishop, and V. M. Kenkre, Bistability and hysteresis in the sliding friction of a dimer, Phys. Rev. B 72(19), 195418 (2005)
https://doi.org/10.1103/PhysRevB.72.195418
7 E. Heinsalu, M. Patriarca, and F. Marchesoni, Dimer diffusion in a washboard potential, Phys. Rev. E 77(2), 021129 (2008)
https://doi.org/10.1103/PhysRevE.77.021129
8 A. E. Filippov, J. Klafter, and M. Urbakh, Friction through dynamical formation and rupture of molecular bonds, Phys. Rev. Lett. 92(13), 135503 (2004)
https://doi.org/10.1103/PhysRevLett.92.135503
9 S. Maier, Y. Sang, T. Filleter, M. Grant, R. Bennewitz, E. Gnecco, and E. Meyer, Fluctuations and jump dynamics in atomic friction experiments, Phys. Rev. B 72(24), 245418 (2005)
https://doi.org/10.1103/PhysRevB.72.245418
10 H. Y. Wang and J. D. Bao, Transport coherence in coupled Brownian ratchet, Physica A 374(1), 33 (2007)
https://doi.org/10.1016/j.physa.2006.07.005
11 J. L. Mateos, A random walker on a ratchet, Physica A 351(1), 79 (2005)
https://doi.org/10.1016/j.physa.2004.12.009
12 S. E. Mangioni and H. S. Wio, A random walker on a ratchet potential: Effect of a non Gaussian noise, Eur. Phys. J. B 61(1), 67 (2008)
https://doi.org/10.1140/epjb/e2008-00027-y
13 E. M. Craig, M. J. Zuckermann, and H. Linke, Mechanical coupling in flashing ratchets, Phys. Rev. E 73(5), 051106 (2006)
https://doi.org/10.1103/PhysRevE.73.051106
14 J. Menche and L. Schimansky-Geier, Two particles with bistable coupling on a ratchet, Phys. Lett. A 359(2), 90 (2006)
https://doi.org/10.1016/j.physleta.2006.02.067
15 M. Evstigneev, S. von Gehlen, and P. Reimann, Interaction-controlled Brownian motion in a tilted periodic potential, Phys. Rev. E 79(1), 011116 (2009)
https://doi.org/10.1103/PhysRevE.79.011116
16 C. Lutz, M. Reichert, H. Stark, and C. Bechinger, Surmounting barriers: The benefit of hydrodynamic interactions, Europhys. Lett. 74(4), 719 (2006)
https://doi.org/10.1209/epl/i2006-10017-9
17 T. F. Gao, B. Q. Ai, Z. G. Zheng, and J. C. Chen, The enhancement of current and efficiency in feedback coupled Brownian ratchets, J. Stat. Mech. 2016(9), 093204 (2016)
https://doi.org/10.1088/1742-5468/2016/09/093204
18 H. Y. Wang and J. D. Bao, Kramers-type elastic ratchet model for ATP gating during kinesin’s mechanochemical cycle, Physica A 389(3), 433 (2010)
https://doi.org/10.1016/j.physa.2009.09.036
19 Z. G. Zheng and Z. Hong-Qing, New soliton-like solutions for (2+1)-dimensional breaking soliton equation, Commum. Theor. Phys. 43(3), 401 (2005)
https://doi.org/10.1088/0253-6102/43/3/005
20 B. O. Yan, R. M. Miura, and Y. D. Chen, Direction reversal of fluctuation-induced biased Brownian motion on distorted ratchets, J. Theor. Biol. 210(2), 141 (2001)
https://doi.org/10.1006/jtbi.2000.2288
21 A. Pototsky, N. B. Janson, F. Marchesoni, and S. Savelev, Dipole rectification in an oscillating electric field, Europhys. Lett. 88(3), 30003 (2009)
https://doi.org/10.1209/0295-5075/88/30003
22 Z. G. Zheng, G. Hu, and B. Hu, Collective directional transport in coupled nonlinear oscillators without external bias, Phys. Rev. Lett. 86(11), 2273 (2001)
https://doi.org/10.1103/PhysRevLett.86.2273
23 S. von Gehlen, M. Evstigneev, and P. Reimann, Ratchet effect of a dimer with broken friction symmetry in a symmetric potential, Phys. Rev. E 79(3), 031114 (2009)
https://doi.org/10.1103/PhysRevE.79.031114
24 H. Y. Wang and J. D. Bao, The roles of ratchet in transport of two coupled particles, Physica A 337(1–2), 13 (2004)
https://doi.org/10.1016/j.physa.2004.01.031
25 Z. G. Zheng, M. C. Cross, and G. Hu, Collective directed transport of symmetrically coupled lattices in symmetric periodic potentials, Phys. Rev. Lett. 89, 154102 (2002)
https://doi.org/10.1103/PhysRevLett.89.154102
26 Z. G. Zheng and H. B. Chen, Cooperative twodimensional directed transport, Europhys. Lett. 92(3), 30004 (2010)
https://doi.org/10.1209/0295-5075/92/30004
27 S. von Gehlen, M. Evstigneev, and P. Reimann, Dynamics of a dimer in a symmetric potential: Ratchet effect generated by an internal degree of freedom, Phys. Rev. E 77(3), 031136 (2008)
https://doi.org/10.1103/PhysRevE.77.031136
28 A. D. Rogat and K. G. Miler, A role for myosin VI in actin dynamics at sites of membrane remodeling during Drosophila spermatogenesis, J. Cell Sci. 115(24), 4855 (2002)
https://doi.org/10.1242/jcs.00149
29 H. Park, A. Li, L. Q. Chen, A. Houdusse, P. R. Selvin, and H. L. Sweeney, The unique insert at the end of the myosin VI motor is the sole determinant of directionality, Proc. Natl. Acad. Sci. USA 104(3), 778 (2007)
https://doi.org/10.1073/pnas.0610066104
30 E. M. De La Cruz, E. M. Ostap, and H. L. Sweeney, Kinetic mechanism and regulation of myosin VI, J. Biochem. 276(34), 32373 (2001)
https://doi.org/10.1074/jbc.m104136200
31 S. Nishikawa, K. Homma, Y. Komori, M. Iwaki, T. Wazawa, A. Hikikoshi Iwone, J. Saito, R. Ikebe, E. Katayama, T. Yanagida, and M. Ikebe, Class VI myosin moves processively along actin filaments backward with large steps, Biochem. Biophys. Res. Commun. 290(1), 311 (2002)
https://doi.org/10.1006/bbrc.2001.6142
32 A. Wunderlin and H. Haken, Generalized Ginzburg- Landau equations, slaving principle and center manifold theorem, Z. Phys. B Condens. Matter 44(1–2), 135 (1981)
33 J. C. Chen and G. Z. Su, Thermodynamics and Statistical Physics (Vol. 1), Beijing: Science Press, 2010 (in Chinese)
34 J. D. Bao, Stochastic Simulation Method of Classical and Quantum Dissipative Systems, Beijing: Science Press, 2009 (in Chinese)
35 Z. G. Zheng, Collective Behaviors and Spatiotemporal Dynamics in Coupled Nonlinear System, Beijing: Higher Education Press, 2004 (in Chinese)
36 H. B. Chen, Q. W. Wang, and Z. G. Zheng, Deterministic directed transport of inertial particles in a flashing ratchet potential, Phys. Rev. E 71(3), 031102 (2005)
https://doi.org/10.1103/PhysRevE.71.031102
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed