Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (6): 120506   https://doi.org/10.1007/s11467-017-0662-1
  本期目录
Resonant current in coupled inertial Brownian particles with delayed-feedback control
Tian-Fu Gao1, Zhi-Gang Zheng2(), Jin-Can Chen3()
1. College of Physical Science and Technology, Shenyang Normal University, Shenyang 110034, China
2. College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
3. Department of Physics, Xiamen University, Xiamen 361005, China
 全文: PDF(2150 KB)  
Abstract

The transport of a walker in rocking feedback-controlled ratchets is investigated. The walker consists of two coupled “feet” that allow the interchange of the order of particles while the walker moves. In the underdamped case, the deterministic dynamics of the walker in a tilted asymmetric ratchet with an external periodic force is considered. It is found that delayed feedback ratchets with a switching-on and-off dependence of the states of the system can lead to absolute negative mobility. In such a novel phenomenon, the particles move against the bias. Moreover, the walker can acquire a series of resonant steps for different values of the current. It is interesting to find that the resonant currents of the walker are induced by the phase locked motion that corresponds to the synchronization of the motion with the change in the frequency of the external driving. These resonant steps can be well predicted in terms of time-space symmetry analysis, which is in good agreement with dynamics simulations. The transport performances can be optimized and controlled by suitably adjusting the parameters of the delayed-feedback ratchets.

Key wordsdelayed-feedback control    absolute negative mobility    resonant steps    phase locking
收稿日期: 2016-10-17      出版日期: 2017-05-31
Corresponding Author(s): Zhi-Gang Zheng,Jin-Can Chen   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(6): 120506.
Tian-Fu Gao, Zhi-Gang Zheng, Jin-Can Chen. Resonant current in coupled inertial Brownian particles with delayed-feedback control. Front. Phys. , 2017, 12(6): 120506.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0662-1
https://academic.hep.com.cn/fop/CN/Y2017/V12/I6/120506
1 P. K. Ghosh, P. Hänggi, F. Marchesoni, S. Martens, F. Nori, L. Schimansky-Geier, and G. Schmid, Driven Brownian transport through arrays of symmetric obstacles, Phys. Rev. E 85(1), 011101 (2012)
https://doi.org/10.1103/PhysRevE.85.011101
2 P. Reimann, Brownian motors: Noisy transport far from equilibrium, Phys. Rep. 361(2–4), 57 (2002)
https://doi.org/10.1016/S0370-1573(01)00081-3
3 P. K. Ghosh, V. R. Misko, F. Marchesoni, and F. Nori, Self-propelled Janus particles in a ratchet: Numerical simulations, Phys. Rev. Lett. 110(26), 268301 (2013)
https://doi.org/10.1103/PhysRevLett.110.268301
4 J. Spiechowicz, P. Hänggi, and J. Łuczka, Josephson junction ratchet: The impact of finite capacitances, Phys. Rev. B 90(5), 054520 (2014)
https://doi.org/10.1103/PhysRevB.90.054520
5 J. Spiechowicz and J. Łuczka, Efficiency of the SQUID ratchet driven by external current, New J. Phys. 17(2), 023054 (2015)
https://doi.org/10.1088/1367-2630/17/2/023054
6 J. L. Mateos and F. R. Alatriste, Phase synchronization in tilted inertial ratchets as chaotic rotators, Chaos 18(4), 043125 (2008)
https://doi.org/10.1063/1.3043423
7 A. V. Arzola, K. Volke-Sepúlveda, and J. L. Mateos, Dynamical analysis of an optical rocking ratchet: Theory and experiment, Phys. Rev. E 87(6), 062910 (2013)
https://doi.org/10.1103/PhysRevE.87.062910
8 R. L. Kautz, Noise, chaos, and the Josephson voltage standard, Rep. Prog. Phys. 59(8), 935 (1996)
https://doi.org/10.1088/0034-4885/59/8/001
9 F. R. Alatriste and J. L. Mateos, Phase synchronization in tilted deterministic ratchets, Physica A 372(2), 263 (2006)
https://doi.org/10.1016/j.physa.2006.08.038
10 D. Hennig, Current control in a tilted washboard potential via time-delayed feedback, Phys. Rev. E 79(4), 041114 (2009)
https://doi.org/10.1103/PhysRevE.79.041114
11 C. Mulhern, Persistence of uphill anomalous transport in inhomogeneous media, Phys. Rev. E 88(2), 022906 (2013)
https://doi.org/10.1103/PhysRevE.88.022906
12 C. C. de Souza Silva, J. Van de Vondel, M. Morelle, and V. V. Moshchalkov, Controlled multiple reversals of a ratchet effect, Nature 440(7084), 651 (2006)
https://doi.org/10.1038/nature04595
13 E. M. Craig, N. J. Kuwada, B. J. Lopez, and H. Linke, Feedback control in flashing ratchets, Ann. Phys. 17(2–3), 115 (2008)
https://doi.org/10.1002/andp.200710276
14 M. Feito, J. P. Baltanás, and F. J. Cao, Rocking feedback-controlled ratchets, Phys. Rev. E 80(3), 031128 (2009)
https://doi.org/10.1103/PhysRevE.80.031128
15 F. J. Cao, M. Feito, and H. Touchette, Information and flux in a feedback controlled Brownian ratchet, Physica A 388(2–3), 113 (2009)
https://doi.org/10.1016/j.physa.2008.10.006
16 M. Feito and F. J. Cao, Time-delayed feedback control of a flashing ratchet, Phys. Rev. E 76(6), 061113 (2007)
https://doi.org/10.1103/PhysRevE.76.061113
17 B. J. Lopez, N. J. Kuwada, E. M. Craig, B. R. Long, and H. Linke, Realization of a feedback controlled flashing ratchet, Phys. Rev. Lett. 101(22), 220601 (2008)
https://doi.org/10.1103/PhysRevLett.101.220601
18 M. Foroutan, Investigation of the stochastic dynamics of nanomotor protein: Effect of bistable potential type, J. Comput. Theor. Nanosci. 6(1), 222 (2009)
https://doi.org/10.1166/jctn.2009.1031
19 L. Machura, M. Kostur, P. Talkner, J. Łuczka, and P. Hänggi, Absolute negative mobility induced by thermal equilibrium fluctuations, Phys. Rev. Lett. 98(4), 040601 (2007)
https://doi.org/10.1103/PhysRevLett.98.040601
20 J. L. Mateos and F. R. Alatriste, Phase synchronization for two Brownian motors with bistable coupling on a ratchet, Chem. Phys. 375(2–3), 464 (2010)
https://doi.org/10.1016/j.chemphys.2010.04.022
21 L. Machura, M. Kostur, P. Talkner, J. Łuczka, F. Marchesoni, and P. Hänggi, Brownian motors: Current fluctuations and rectification efficiency, Phys. Rev. E 70(6), 061105 (2004)
https://doi.org/10.1103/PhysRevE.70.061105
22 J. Spiechowicz, P. Hänggi, and J. Łuczka, Brownian motors in the microscale domain: Enhancement of efficiency by noise, Phys. Rev. E 90(3), 032104 (2014)
https://doi.org/10.1103/PhysRevE.90.032104
23 J. Spiechowicz, J. Łuczka, and L. Machura, Efficiency of transport in periodic potentials: Dichotomous noise contra deterministic force, J. Stat. Mech. 2016(5), 054038 (2016)
https://doi.org/10.1088/1742-5468/2016/05/054038
24 F. J. Cao, L. Dinis, and J. M. R. Parrondo, Feedback control in a collective flashing ratchet, Phys. Rev. Lett. 93(4), 040603 (2004)
https://doi.org/10.1103/PhysRevLett.93.040603
25 M. Feito and F. J. Cao, Information and maximum power in a feedback controlled Brownian ratchet, Eur. Phys. J. B 59(1), 63 (2007)
https://doi.org/10.1140/epjb/e2007-00255-7
26 M. Feito and F. J. Cao, Transport reversal in a delayed feedback ratchet, Physica A 387(18), 4553 (2008)
https://doi.org/10.1016/j.physa.2008.03.027
27 S. A. M. Loos, R. Gernert, and S. H. L. Klapp, Delayinduced transport in a rocking ratchet under feedback control, Phys. Rev. E 89(5), 052136 (2014)
https://doi.org/10.1103/PhysRevE.89.052136
28 S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, and M. Sano, Experimental demonstration of informationto- energy conversion and validation of the generalized Jarzynski equality, Nat. Phys. 6(12), 988 (2010)
29 B. Q. Ai and L. G. Liu, Facilitated movement of inertial Brownian motors driven by a load under an asymmetric potential, Phys. Rev. E 76(4), 042103 (2007)
https://doi.org/10.1103/PhysRevE.76.042103
30 B. Q. Ai, Y. F. He, and W. R. Zhong, Chirality separation of mixed chiral microswimmers in a periodic channel, Soft Matter 11(19), 3852 (2015)
https://doi.org/10.1039/C5SM00651A
31 B. Q. Ai, Ratchet transport powered by chiral active particles, Sci. Rep. 6, 18740 (2016)
https://doi.org/10.1038/srep18740
32 R. Eichhorn, P. Reimann, and P. Hänggi, Paradoxical motion of a single Brownian particle: Absolute negative mobility, Phys. Rev. E 66(6), 066132 (2002)
https://doi.org/10.1103/PhysRevE.66.066132
33 M. Kostur, J. Łuczka, and P. Hänggi, Negative mobility induced by colored thermal fluctuations, Phys. Rev. E 80(5), 051121 (2009)
https://doi.org/10.1103/PhysRevE.80.051121
34 T. F. Gao, Z. G. Zheng, and J. C. Chen, Directed transport of coupled Brownian ratchets with time-delayed feedback, Chin. Phys. B 22(8), 080502 (2013)
https://doi.org/10.1088/1674-1056/22/8/080502
35 W. T. Coffey, J. L. Déjardin, and Y. P. Kalmykov, Nonlinear noninertial response of a Brownian particle in a tilted periodic potential to a strong ac force, Phys. Rev. E 61(4), 4599 (2000)
https://doi.org/10.1103/PhysRevE.61.4599
36 F. R. Alatriste and J. L. Mateos, Anomalous mobility and current reversals in inertial deterministic ratchets, Physica A 384(2), 223 (2007)
https://doi.org/10.1016/j.physa.2007.05.063
37 Z. Zheng, M. C. Cross, and G. Hu, Collective directed transport of symmetrically coupled lattices in symmetric periodic potentials, Phys. Rev. Lett. 89(15), 154102 (2002)
https://doi.org/10.1103/PhysRevLett.89.154102
38 C. Reichhardt and F. Nori, Phase locking, Devil’s staircases, Farey trees, and Arnold tongues in driven vortex lattices with periodic pinning, Phys. Rev. Lett. 82(2), 414 (1999)
https://doi.org/10.1103/PhysRevLett.82.414
39 J. Spiechowicz and J. Łuczka, Diffusion anomalies in acdriven Brownian ratchets, Phys. Rev. E 91(6), 062104 (2015)
https://doi.org/10.1103/PhysRevE.91.062104
40 M. Brown and F. Renzoni, Ratchet effect in an optical lattice with biharmonic driving: A numerical analysis, Phys. Rev. A 77(3), 033405 (2008)
https://doi.org/10.1103/PhysRevA.77.033405
41 M. Knufinke, K. Ilin, M. Siegel, D. Koelle, R. Kleiner, and E. Goldobin, Deterministic Josephson vortex ratchet with a load, Phys. Rev. E 85(1), 011122 (2012)
https://doi.org/10.1103/PhysRevE.85.011122
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed