Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (3): 127209   https://doi.org/10.1007/s11467-017-0663-0
  本期目录
Two-carrier transport in SrMnBi2 thin films
Xiao Yan1,Cheng Zhang2,3,Shan-Shan Liu2,3,Yan-Wen Liu2,3,David Wei Zhang1,Fa-Xian Xiu2,3(),Peng Zhou1()
1. State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
2. State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
3. Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
 全文: PDF(14702 KB)  
Abstract

Monocrystalline SrMnBi2 thin films were grown by molecular beam epitaxy (MBE), and their transport properties were investigated. A high and unsaturated linear magnetoresistance (MR) was observed, which exhibited a transition from a semi-classical weak-field B2 dependence to a high-field linear dependence. An unusual nonlinear Hall resistance was also observed because of the anisotropic Dirac fermions. The two-carrier model was adopted to analyze the unusual Hall resistance quantitatively. The fitting results yielded carrier densities and mobilities of 3.75×1014 cm−2 and 850 cm2·V−1s−1, respectively, for holes, and 1.468×1013 cm−2, 4118 cm2·V−1·s−1, respectively, for electrons, with a hole-dominant conduction at 2.5 K. Hence, an effective mobility can be achieved, which is in reasonable agreement with the effective hole mobility of 1800 cm2·V−1·s−1, extracted from the MR. Further, the angle-dependent MR, proportional to cosθ, where θ is the angle between the external magnetic field and the perpendicular orientation of the sample plane, also implies a high anisotropy of the Fermi surface. Our results about SrMnBi2 thin films, as one of a new class of AEMnBi2 and AEMnSb2 (AE= Ca, Sr, Ba, Yb, Eu) materials, suggest that they have a lot of exotic transport properties to be investigated, and that their high mobility might facilitate electronic device applications.

Key wordsSrMnBi2    thin films    magnetoresistance    two carriers    anisotropic Dirac fermions
收稿日期: 2017-01-11      出版日期: 2017-04-13
Corresponding Author(s): Fa-Xian Xiu,Peng Zhou   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(3): 127209.
Xiao Yan,Cheng Zhang,Shan-Shan Liu,Yan-Wen Liu,David Wei Zhang,Fa-Xian Xiu,Peng Zhou. Two-carrier transport in SrMnBi2 thin films. Front. Phys. , 2017, 12(3): 127209.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0663-0
https://academic.hep.com.cn/fop/CN/Y2017/V12/I3/127209
1 K. Ziegler, Robust transport properties in graphene, Phys. Rev. Lett. 97(26), 266802 (2006)
https://doi.org/10.1103/PhysRevLett.97.266802
2 A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6, 183 (2007)
https://doi.org/10.1038/nmat1849
3 B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314(5806), 1757 (2006)
https://doi.org/10.1126/science.1133734
4 J. Moore, Topological insulators: The next generation, Nat. Phys. 5(6), 378 (2009)
5 T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2, Nat. Mater. 14(3), 280 (2015)
https://doi.org/10.1038/nmat4143
6 M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
https://doi.org/10.1103/RevModPhys.82.3045
7 K. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, Electronic properties of graphene, physica status solidi(b), 244(11), 4106 (2007)
8 A. Narayanan, M. D. Watson, S. F. Blake, N. Bruyant, L. Drigo, Y. L. Chen, D. Prabhakaran, B. Yan, C. Felser, T. Kong, P. C. Canfield, and A. I. Coldea, Linear magnetoresistance caused by mobility fluctuations in n-doped Cd3As2, Phys. Rev. Lett. 114(11), 117201 (2015)
https://doi.org/10.1103/PhysRevLett.114.117201
9 A. A. Abrikosov, Quantum magnetoresistance, Phys. Rev. B 58(5), 2788 (1998)
https://doi.org/10.1103/PhysRevB.58.2788
10 D. K. S. Bertolazzi and A. Kis, Nonvolatile memory cells based on MoS2-graphene heterostructures, ACS Nano 7(4), 7 (2013)
https://doi.org/10.1021/nn3059136
11 S. J. Han, A. V. Garcia, S. Oida, K. A. Jenkins, and W. Haensch, Graphene radio frequency receiver integrated circuit, Nat. Commun. 5, 3086 (2014)
https://doi.org/10.1038/ncomms4086
12 L. Yu, Y. H. Lee, X. Ling, E. J. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics, Nano Lett. 14(6), 3055 (2014)
https://doi.org/10.1021/nl404795z
13 J. B. He, D. M. Wang, and G. F. Chen, Giant magnetoresistance in layered manganese pnictide CaMnBi2, Appl. Phys. Lett. 100(11), 112405 (2012)
https://doi.org/10.1063/1.3694760
14 Y. F. Guo, A. J. Princep, X. Zhang, P. Manuel, D. Khalyavin, I. I. Mazin, Y. G. Shi, and A. T. Boothroyd, Coupling of magnetic order to planar Bi electrons in the anisotropic Dirac metals AMnBi2 (A= Sr, Ca), Phys. Rev. B 90, 075120 (2014)
https://doi.org/10.1103/PhysRevB.90.075120
15 M. A. Farhan, G. Lee, and J. H. Shim, AEMnSb2 (AE= Sr, Ba): A new class of Dirac materials, J. Phys.: Condens. Matter 26(4), 042201 (2014)
https://doi.org/10.1088/0953-8984/26/4/042201
16 K. Wang, L. Wang, and C. Petrovic, Large magnetothermopower effect in Dirac materials (Sr/Ca)MnBi2, Appl. Phys. Lett. 100(11), 112111 (2012)
https://doi.org/10.1063/1.3695155
17 H. Masuda, H. Sakai, M. Tokunaga, Y. Yamasaki, A. Miyake, J. Shiogai, S. Nakamura, S. Awaji, A. Tsukazaki, H. Nakao, Y. Murakami, T. Arima, Y. Tokura, and S. Ishiwata, Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined 2d Dirac fermions, Sci. Adv. 2(1), e1501117 (2016)
https://doi.org/10.1126/sciadv.1501117
18 K. F. Wang, D. Graf, H. C. Lei, S. W. Tozer, and C. Petrovic, Quantum transport of two-dimensional Dirac fermions in SrMnBi2, Phys. Rev. B 84, 220401(R)
https://doi.org/10.1103/PhysRevB.84.220401
19 J. Park, G. Lee, F. Wolff-Fabris, Y. Y. Koh, M. J. Eom, Y. K. Kim, M. A. Farhan, Y. J. Jo, C. Kim, J. H. Shim, and J. S. Kim, Anisotropic Dirac fermions in a Bi square net of SrMnBi2, Phys. Rev. Lett. 107(12), 126402 (2011)
https://doi.org/10.1103/PhysRevLett.107.126402
20 J. Park, G. Lee, F. Wolff-Fabris, Y. Y. Koh, M. J. Eom, Y. K. Kim, M. A. Farhan, Y. J. Jo, C. Kim, J. H. Shim, and J. S. Kim, Anisotropic Dirac fermions in a Bi square net of SrMnBi2, Phys. Rev. Lett. 107, 126402
https://doi.org/10.1103/PhysRevLett.107.126402
21 A. Kobayashi, S. Katayama, Y. Suzumura, and H. Fukuyama, Massless fermions in organic conductor, J. Phys. Soc. Jpn. 76(3), 034711 (2007)
https://doi.org/10.1143/JPSJ.76.034711
22 H.-H. Kuo, J.-H. Chu, S. C. Riggs, L. Yu, P. L. McMahon, K. De Greve, Y. Yamamoto, J. G. Analytis, and I. R. Fisher, Possible origin of the nonmonotonic doping dependence of the in-plane resistivity anisotropy of Ba(Fe1−xTx)2As2 (T= Co, Ni, and Cu), Phys. Rev. B 84, 054540
https://doi.org/10.1103/PhysRevB.84.054540
23 K. K. Huynh, Y. Tanabe, and K. Tanigaki, Both electron and hole Dirac cone states in Ba(FeAs)2 confirmed by magnetoresistance, Phys. Rev. Lett. 106(21), 217004 (2011)
https://doi.org/10.1103/PhysRevLett.106.217004
24 L. Kouwenhoven and L. Glazman, Revival of the Kondo effect, Phys. World 14(1), 33 (2001)
https://doi.org/10.1088/2058-7058/14/1/28
25 S. Ishiwata, Y. Shiomi, J. S. Lee, M. S. Bahramy, T. Suzuki, M. Uchida, R. Arita, Y. Taguchi, and Y. Tokura, Extremely high electron mobility in a phononglass semimetal, Nat. Mater. 12(6), 512 (2013)
https://doi.org/10.1038/nmat3621
26 A. Husmann, J. B. Betts, G. S. Boebinger, A. Migliori, T. F. Rosenbaum, and M. L. Saboung, Megagauss sensors, Nature 417, 421 (2002)
https://doi.org/10.1038/417421a
27 J. Xiong, S. K. Kushwaha, Tian Liang, J. W. Krizan, M. Hirschberger, Wudi Wang, R. J. Cava, and N. P. Ong, Evidence for the chiral anomaly in the Dirac semimetal Na3Bi, Science 350(6259), 413 (2015)
https://doi.org/10.1126/science.aac6089
28 J. Park, G. Lee, F. Wolff-Fabris, Y. Y. Koh, M. J. Eom, Y. K. Kim, M. A. Farhan, Y. J. Jo, C. Kim, J. H. Shim, and J. S. Kim, Anisotropic Dirac fermions in a Bi square net of SrMnBi2, Phys. Rev. Lett. 107, 126402 (2011)
https://doi.org/10.1103/PhysRevLett.107.126402
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed