Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (3): 128702   https://doi.org/10.1007/s11467-017-0670-1
  本期目录
Regulation of 1, 4, 5-triphosphate receptor channel gating dynamics by mutant presenilin in Alzheimer’s disease cells
Fang Wei1,Xiang Li2,Meichun Cai1,Yanping Liu1,Peter Jung3,Jianwei Shuai1,2,4()
1. Department of Physics, Xiamen University, Xiamen 361005, China
2. State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361005, China
3. Department of Physics and Astronomy and Quantitative Biology Institute, Ohio University, Athens, OH 45701, USA
4. Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
 全文: PDF(1858 KB)  
Abstract

In neurons of patients with Alzheimer’s disease, the intracellular Ca2+ concentration is increased by its release from the endoplasmic reticulum via the inositol 1, 4, 5-triphosphate receptor (IP3R). In this paper, we discuss the IP3R gating dynamics in familial Alzheimer’s disease (FAD) cells induced with mutation PS1. By fitting the parameters of an IP3R channel model to experimental data of the open probability, the mean open time and the mean closed time of IP3R channels, in control cells and FAD mutant cells, we suggest that the interaction of presenilin mutation PS1 with IP3R channels leads the decrease in the unbinding rates of IP3 and the activating Ca2+ from IP3Rs. As a result, the increased affinities of IP3 and activating Ca2+ for IP3R channels induce the increase in the Ca2+ signal in FAD mutant cells. Specifically, the PS1 mutation decreases the IP3 dissociation rate of IP3R channels significantly in FAD mutant cells. Our results suggest possible novel targets for FAD therapeutic intervention.

Key wordsCa2+ signal    channel    neuron    Alzheimer’s disease
收稿日期: 2016-10-31      出版日期: 2017-03-17
Corresponding Author(s): Jianwei Shuai   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(3): 128702.
Fang Wei,Xiang Li,Meichun Cai,Yanping Liu,Peter Jung,Jianwei Shuai. Regulation of 1, 4, 5-triphosphate receptor channel gating dynamics by mutant presenilin in Alzheimer’s disease cells. Front. Phys. , 2017, 12(3): 128702.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0670-1
https://academic.hep.com.cn/fop/CN/Y2017/V12/I3/128702
1 M. Hutton and J. Hardy, The presenilins and Alzheimer’s disease, Hum. Mol. Genet. 6(10), 1639 (1997)
https://doi.org/10.1093/hmg/6.10.1639
2 J. Hardy, A hundred years of Alzheimer’s disease research, Neuron 52(1), 3 (2006)
https://doi.org/10.1016/j.neuron.2006.09.016
3 F. M. LaFerla and S. Oddo, Alzheimer’s disease: Abeta, tau and synaptic dysfunction, Trends Mol. Med. 11(4), 170 (2005)
https://doi.org/10.1016/j.molmed.2005.02.009
4 M. P. Mattson, Pathways towards and away from Alzheimer’s disease, Nature 430(7000), 631 (2004)
https://doi.org/10.1038/nature02621
5 C. Haass and D. J. Selkoe, Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide, Nat. Rev. Mol. Cell Biol. 8(2), 101 (2007)
https://doi.org/10.1038/nrm2101
6 J. Hardy and D. J. Selkoe, The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics, Science 297(5580), 353 (2002)
https://doi.org/10.1126/science.1072994
7 F. M. LaFerla, Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease, Nat. Rev. Neurosci. 3(11), 862 (2002)
https://doi.org/10.1038/nrn960
8 I. F. Smith, K. N. Green, and F. M. LaFerla, Calcium dysregulation in Alzheimer’s disease: Recent advances gained from genetically modified animals,Cell Calcium 38(3–4), 427 (2005)
https://doi.org/10.1016/j.ceca.2005.06.021
9 J. Herms, I. Schneider, I. Dewachter, N. Caluwaerts, H. Kretzschmar, and F. Van Leuven, Capacitive calcium entry is directly attenuated by mutant presenilin-1, independent of the expression of the amyloid precursor protein, J. Biol. Chem. 278(4), 2484 (2003)
https://doi.org/10.1074/jbc.M206769200
10 M. A. Leissring, B. A. Paul, I. Parker, C. W. Cotman, and F. M. LaFerla, Alzheimer’s presenilin-1 mutation potentiates inositol 1, 4, 5-trisphosphate-mediated calcium signaling in Xenopus oocytes, J. Neurochem. 72(3), 1061 (1999)
https://doi.org/10.1046/j.1471-4159.1999.0721061.x
11 I. F. Smith, B. Hitt, K. N. Green, S. Oddo, and F. M. LaFerla, Enhanced caffeine-induced Ca2+ release in the 3xTg-AD mouse model of Alzheimer’s disease, J. Neurochem. 94(6), 1711 (2005)
https://doi.org/10.1111/j.1471-4159.2005.03332.x
12 G. E. Stutzmann, Calcium dysregulation, IP3 signaling, and Alzheimer’s disease, Neuroscientist 11(2), 110 (2005)
https://doi.org/10.1177/1073858404270899
13 G. E. Stutzmann, A. Caccamo, F. M. LaFerla, and I. Parker, Dysregulated IP3 signaling in cortical neurons of knock-in mice expressing an Alzheimer’s-linked mutation in presenilin1 results in exaggerated Ca2+ signals and altered membrane excitability, J. Neurosci. 24(2), 508 (2004)
https://doi.org/10.1523/JNEUROSCI.4386-03.2004
14 J. K. Foskett, C. White, K. H. Cheung, and D. O. D. Mak, Inositol trisphosphate receptor Ca2+ release channels, Physiol. Rev. 87(2), 593 (2007)
https://doi.org/10.1152/physrev.00035.2006
15 M. J. Berridge, M. D. Bootman, and H. L. Roderick, Calcium signaling: Dynamics, homeostasis and remodeling, Nat. Rev. Mol. Cell Biol. 4(7), 517 (2003)
https://doi.org/10.1038/nrm1155
16 K. N. Green, A. Demuro, Y. Akbari, B. D. Hitt, I. F. Smith, I. Parker, and F. M. LaFerla, SERCA pump activity is physiologically regulated by presenilin and regulates amyloid beta production, J. Cell Biol. 181(7), 1107 (2008)
https://doi.org/10.1083/jcb.200706171
17 S. Chakroborty, I. Goussakov, M. B. Miller, and G. E. Stutzmann, Deviant ryanodine receptor-mediated calcium release resets synaptic homeostasis in presymptomatic 3xTg-AD mice, J. Neurosci. 29(30), 9458 (2009)
https://doi.org/10.1523/JNEUROSCI.2047-09.2009
18 G. E. Stutzmann, I. Smith, A. Caccamo, S. Oddo, F. M. Laferla, and I. Parker, Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer’s disease mice,J. Neurosci. 26(19), 5180 (2006)
https://doi.org/10.1523/JNEUROSCI.0739-06.2006
19 H. Qi and J. Shuai, Alzheimer’s disease via enhanced calcium signaling caused by the decrease of endoplasmic reticulum–mitochondrial distance, Med. Hypotheses. 89, 28 (2016)
https://doi.org/10.1016/j.mehy.2016.01.022
20 H. Qi, L. Li, and J. Shuai, Optimal microdomain crosstalk between endoplasmic reticulum and mitochondria for Ca2+ oscillations, Sci. Rep. 5, 7984 (2015)
https://doi.org/10.1038/srep07984
21 N. Hirashima, R. Etcheberrigaray, S. Bergamaschi, M. Racchi, F. Battaini, G. Binetti, S. Govoni, and D. L. Alkon, Calcium responses in human fibroblasts: a diagnostic molecular profile for Alzheimer’s disease, Neurobiol. Aging. 17(4), 549 (1996)
https://doi.org/10.1016/0197-4580(96)00074-7
22 E. Ito, K. Oka, R. Etcheberrigaray, T. J. Nelson, D. L. McPhie, B. Tofel-Grehl, G. E. Gibson, and D. L. Alkon, Internal Ca2+ mobilization is altered in fibroblasts from patients with Alzheimer disease, Proc. Natl. Acad. Sci. USA 91(2), 534 (1994)
https://doi.org/10.1073/pnas.91.2.534
23 K. H. Cheung, D. Shineman, M. Muller, C. Cardenas, L. Mei, J. Yang, T. Tomita, T. Iwatsubo, V. M. Lee, and J. K. Foskett, Mechanism of Ca2+ disruption in Alzheimer’s disease by presenilin regulation of InsP3 receptor channel gating, Neuron. 58(6), 871 (2008)
https://doi.org/10.1016/j.neuron.2008.04.015
24 K. H. Cheung, L. Mei, D. O. D. Mak, I. Hayashi, T. Iwatsubo, D. E. Kang, and J. K. Foskett, Gain-offunction enhancement of InsP3 receptor modal gating by familial Alzheimer’s disease-linked presenilin mutants in humancells and mouse neurons, Sci. Signal. 3(114), ra22 (2010)
https://doi.org/10.1126/scisignal.2000818
25 G. W. De Young, and J. Keizer, A single-pool inositol 1, 4, 5-trisphosphate- receptor-based model for agonist-stimulated oscillations in Ca2+ concentration, Proc. Natl. Acad. Sci. USA 89(20), 9895 (1992)
https://doi.org/10.1073/pnas.89.20.9895
26 J. Sneyd and J. Dufour, A dynamic model of the type-2 inositol trisphosphate receptor, Proc. Natl. Acad. Sci. USA 99(4), 2398 (2002)
https://doi.org/10.1073/pnas.032281999
27 D. O. D. Mak, S. M. J. McBride, and J. K. Foskett, Spontaneous channel activity of the inositol 1, 4, 5- trisphosphate (InsP3) receptor (InsP3R): Application of allosteric modeling to calcium and InsP3 regulation of InsP3R single-channel gating, J. Gen. Physiol. 122(5), 583 (2003)
https://doi.org/10.1085/jgp.200308809
28 J. Shuai, J. E. Pearson, J. K. Foskett, D. O. D. Mak, and I. Parker, A kinetic model of single and clustered IP3 receptors in the absence of Ca2+ feedback, Biophys. J. 93(4), 1151 (2007)
https://doi.org/10.1529/biophysj.107.108795
29 J. W. Shuai, D. P. Yang, J. E. Pearson, and S. Rüdiger, An investigation of models of the IP3R channel in Xenopus oocyte, Chaos 19(3), 037105 (2009)
https://doi.org/10.1063/1.3156402
30 G. Ullah, D. O. Daniel Mak, and J. E. Pearson, A datadriven model of a modal gated ion channel: The inositol 1, 4, 5-trisphosphate receptor in insect Sf9 cells, J. Gen. Physiol. 140(2), 159 (2012)
https://doi.org/10.1085/jgp.201110753
31 B. A. Bicknell, and G. J. Goodhill, Emergence of ion channel modal gating from independent subunit kinetics, Proc. Natl. Acad. Sci. USA 113(36), E5288 (2016)
https://doi.org/10.1073/pnas.1604090113
32 L. Ionescu, C. White, K. H. Cheung, J. Shuai, I. Parker, J. E. Pearson, J. K. Foskett, and D. O. D. Mak, Mode switching is the major mechanism of ligand regulation of InsP3 receptor calcium release channels, J. Gen. Physiol. 130(6), 631 (2007)
https://doi.org/10.1085/jgp.200709859
33 D. O. D. Mak, J. E. Pearson, K. P. C. Loong, S. Datta, M. Fernández-Mongil, and J. K. Foskett, Rapid ligand-regulated gating kinetics of single inositol 1, 4, 5-trisphosphate receptor Ca2+ release channels, EMBO Rep. 8(11), 1044 (2007)
https://doi.org/10.1038/sj.embor.7401087
34 G. Ullah, A. Demuro, I. Parker, and J. E. Pearson, Analyzing and modeling the kinetics of amyloid beta pores associated with Alzheimer’s disease pathology, PLoS One 10(9), e0137357 (2015)
https://doi.org/10.1371/journal.pone.0137357
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed