Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (6): 120508   https://doi.org/10.1007/s11467-017-0675-9
  本期目录
Synchronization of coupled metronomes on two layers
Jing Zhang,Yi-Zhen Yu(),Xin-Gang Wang()
School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, China
 全文: PDF(4727 KB)  
Abstract

Coupled metronomes serve as a paradigmatic model for exploring the collective behaviors of complex dynamical systems, as well as a classical setup for classroom demonstrations of synchronization phenomena. Whereas previous studies of metronome synchronization have been concentrating on symmetric coupling schemes, here we consider the asymmetric case by adopting the scheme of layered metronomes. Specifically, we place two metronomes on each layer, and couple two layers by placing one on top of the other. By varying the initial conditions of the metronomes and adjusting the friction between the two layers, a variety of synchronous patterns are observed in experiment, including the splay synchronization (SS) state, the generalized splay synchronization (GSS) state, the anti-phase synchronization (APS) state, the in-phase delay synchronization (IPDS) state, and the in-phase synchronization (IPS) state. In particular, the IPDS state, in which the metronomes on each layer are synchronized in phase but are of a constant phase delay to metronomes on the other layer, is observed for the first time. In addition, a new technique based on audio signals is proposed for pattern detection, which is more convenient and easier to apply than the existing acquisition techniques. Furthermore, a theoretical model is developed to explain the experimental observations, and is employed to explore the dynamical properties of the patterns, including the basin distributions and the pattern transitions. Our study sheds new lights on the collective behaviors of coupled metronomes, and the developed setup can be used in the classroom for demonstration purposes.

Key wordscoupled oscillators    experimental study    synchronization pattern
收稿日期: 2016-11-02      出版日期: 2017-04-13
Corresponding Author(s): Yi-Zhen Yu,Xin-Gang Wang   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(6): 120508.
Jing Zhang,Yi-Zhen Yu,Xin-Gang Wang. Synchronization of coupled metronomes on two layers. Front. Phys. , 2017, 12(6): 120508.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0675-9
https://academic.hep.com.cn/fop/CN/Y2017/V12/I6/120508
1 Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Berlin: Springer-Verlag, 1984
https://doi.org/10.1007/978-3-642-69689-3
2 A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear ScienceCambridge: Cambridge University Press, 2001
https://doi.org/10.1017/CBO9780511755743
3 S. Strogatz, Sync: The Emerging Science of Spontaneous Order, New York: Hyperion, 2003
4 C. Huygens, [Letter to de Sluse]. Oeuveres Completes de Christian Huygens. (Letters; No. 133 of 24 February 1665, No. 1335 of 26 February 1665, No. 1345 of 6 March 1665), Societe Hollandaise DesSciences, Martinus Nijhor, La Haye, 1665
5 M. Kapitaniak, K. Czolczynski, P. Perlikowski, A. Stefanski, and T. Kapitaniak, Synchronization of clocks, Phys. Rep. 517(1–2), 1 (2012)
https://doi.org/10.1016/j.physrep.2012.03.002
6 S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, The synchronization of chaotic systems, Phys. Rep. 366(1–2), 1 (2002)
https://doi.org/10.1016/S0370-1573(02)00137-0
7 S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang, Complex networks: Structure and dynamics, Phys. Rep. 424(4–5), 175 (2006)
https://doi.org/10.1016/j.physrep.2005.10.009
8 A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. S. Zhou, Synchronization in complex networks, Phys. Rep. 469(3), 93 (2008)
https://doi.org/10.1016/j.physrep.2008.09.002
9 C. Q. Wang, A. Pumir, N. B. Garnier, and Z. H. Liu, Explosive synchronization enhances selectivity: Example of the cochlea, Front. Phys. 12(5), 128901 (2017)
https://doi.org/10.1007/s11467-016-0634-x
10 S. F. Ma, H. J. Bi, Y. Zou, Z. H. Liu, and S. G. Guang, Shuttle-run synchronization in mobile ad hoc networks, Front. Phys. 10(3), 100505 (2015)
https://doi.org/10.1007/s11467-015-0475-z
11 M. Bennett, M. F. Schatz, H. Rockwood, and K. Wiesenfeld, Huygens’s clocks, Proc. R. Soc. Lond. A 458(2019), 563 (2002)
https://doi.org/10.1098/rspa.2001.0888
12 J. Pantaleone, Synchronization of metronomes, Am. J. Phys. 70(10), 992 (2002)
https://doi.org/10.1119/1.1501118
13 Y. Wu, N. Wang, L. Li, and J. Xiao, Anti-phase synchronization of two coupled mechanical metronomes, Chaos 22(2), 023146 (2012)
https://doi.org/10.1063/1.4729456
14 Y. Wu, Z. Song, W. Liu, J. Jia, and J. Xiao, Experimental and numerical study on the basin stability of the coupled metronomes, Eur. Phys. J. Spec. Top. 223(4), 697 (2014)
https://doi.org/10.1140/epjst/e2014-02135-9
15 Z. Song, Y. Wu, W. Liu, and J. Xiao, Experimental study of the irrational phase synchronization of coupled nonidentical mechanical metronomes, PLoS One 10, 0118986 (2015)
https://doi.org/10.1371/journal.pone.0118986
16 Q. Hu, W. Liu, H. Yang, J. Xiao, and X. Qian, Experimental study on synchronization of three coupled mechanical metronomes, Eur. J. Phys. 34(2), 291 (2013)
https://doi.org/10.1088/0143-0807/34/2/291
17 J. Jia, Z. Song, W. Liu, J. Kurths, and J. Xiao, Experimental study of the triplet synchronization of coupled nonidentical mechanical metronomes, Sci. Rep. 5, 17008 (2015)
https://doi.org/10.1038/srep17008
18 B. Kralemann, A. Pikovsky, and M. Rosenblum, Detecting triplet locking by triplet synchronization indices, Phys. Rev. E 87(5), 052904 (2013)
https://doi.org/10.1103/PhysRevE.87.052904
19 K. Czolczynski, P. Perlikowski, A. Stefanski, and T. Kapitaniak, Clustering and synchronization of nHuygens’ clocks,Physica A 388(24), 5013 (2009)
https://doi.org/10.1016/j.physa.2009.08.033
20 H. Ulrichs, A. Mann, and U. Parlitz, Synchronization and chaotic dynamics of coupled mechanical metronomes, Chaos 19(4), 043120 (2009)
https://doi.org/10.1063/1.3266924
21 E. A. Martens, S. Thutupalli, A. Fourriere, and O. Hallatschek, Chimera states in mechanical oscillator networks, Proc. Natl. Acad. Sci. USA 110(26), 10563 (2013)
https://doi.org/10.1073/pnas.1302880110
22 S. Boda, S. Ujv’ari, A. Tunyagi, and Z. N’eda, Kuramoto-type phase transition with metronomes, Eur. J. Phys. 34(6), 1451 (2013)
https://doi.org/10.1088/0143-0807/34/6/1451
23 T. Kapitaniak, P. Kuzma, J. Wojewoda, K. Czolczynski, and Y. Maistrenko, Imperfect chimera states for coupled pendulums, Sci. Rep. 4, 6379 (2014)
https://doi.org/10.1038/srep06379
24 M. Hasler, Yu. Maistrenko, and O. Popovych, Simple example of partial synchronizaiton of chaotic systems, Phys. Rev. E 58(5), 6843 (1998)
https://doi.org/10.1103/PhysRevE.58.6843
25 Y. Zhang, G. Hu, H. A. Cerdeira, S. Chen, T. Braun, and Y. Yao, Partial synchronization and spontaneous spatial ordering in coupled chaotic systems, Phys. Rev. E 63(2), 026211 (2001)
https://doi.org/10.1103/PhysRevE.63.026211
26 D. M. Abrams and S. H. Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett. 93(17), 174102 (2004)
https://doi.org/10.1103/PhysRevLett.93.174102
27 C. Fu, Z. Deng, L. Huang, and X. G. Wang, Topological control of synchronous patterns in systems of networked chaotic oscillators, Phys. Rev. E 87(3), 032909 (2013)
https://doi.org/10.1103/PhysRevE.87.032909
28 C. Fu, W. Lin, L. Huang, and X. G. Wang, Synchronization transition in networked chaotic oscillators: The viewpoint from partial synchronization, Phys. Rev. E 89(5), 052908 (2014)
https://doi.org/10.1103/PhysRevE.89.052908
29 L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Cluster synchronization and isolated desynchronization in complex networks with symmetries, Nat. Commun. 5, 4079 (2014)
https://doi.org/10.1038/ncomms5079
30 T. Nishikawa and A. E. Motter, Symmetric states requiring system asymmetry, Phys. Rev. Lett. 117(11), 114101 (2016)
https://doi.org/10.1103/PhysRevLett.117.114101
31 M. Zhan, G. Hu, Y. Zhang, and D. He, Generalized splay state in coupled chaotic oscillators induced by weak mutual resonant interactions, Phys. Rev. Lett. 86(8), 1510 (2001)
https://doi.org/10.1103/PhysRevLett.86.1510
32 X. G. Wang, M. Zhan, C. H. Lai, and G. Hu, Measure synchronization in coupled j4 Hamiltonian systems, Phys. Rev. E 67(6), 066215 (2003)
https://doi.org/10.1103/PhysRevE.67.066215
33 K. Czołczyński, P. Perlikowski, A. Stefańki, and T. Kapitaniak, Clustering of non-identical clocks, Prog. Theor. Phys. 125(3), 473 (2011)
https://doi.org/10.1143/PTP.125.473
34 X. G. Wang, Y. C. Lai, and C. H. Lai, Enhancing synchronization based on complex gradient networks, Phys. Rev. E 75 (5), 056205 (2007)
https://doi.org/10.1103/PhysRevE.75.056205
35 X. G. Wang, L. Huang, Y. C. Lai, and C. H. Lai, Optimization of synchronization in gradient clustered networks, Phys. Rev. E 76(5), 056113 (2007)
https://doi.org/10.1103/PhysRevE.76.056113
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed