Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (5): 127403   https://doi.org/10.1007/s11467-017-0683-9
  本期目录
Impurity- and magnetic-field-induced quasiparticle states in chiral p-wave superconductors
Yao-Wu Guo1, Wei Li2,3(), Yan Chen1,4()
1. Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China
2. State Key Laboratory of Functional Materials for Informatics and Shanghai Center for Superconductivity, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
3. CAS Center for Excellence in Superconducting Electronics, Shanghai 200050, China
4. Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
 全文: PDF(830 KB)  
Abstract

Both impurity- and magnetic-field-induced quasiparticle states in chiral p-wave superconductors are investigated theoretically by solving the Bogoliubov–de Gennes equations self-consistently. At the strong scattering limit, we find that a universal state bound to the impurity can be induced for both a single nonmagnetic impurity and a single magnetic impurity. Furthermore, we find that different chiral order parameters and the corresponding supercurrents have uniform distributions around linear impurities. Calculations of the local density of states in the presence of an external magnetic field show that the intensity peak of the zero-energy Majorana mode in the vortex core can be enhanced dramatically by tuning the strength of the external magnetic field or pairing interaction.

Key wordsnonmagnetic/magnetic impurity    chiral p-wave superconductor    vortex state    Majorana mode
收稿日期: 2017-03-05      出版日期: 2017-06-07
Corresponding Author(s): Wei Li,Yan Chen   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(5): 127403.
Yao-Wu Guo, Wei Li, Yan Chen. Impurity- and magnetic-field-induced quasiparticle states in chiral p-wave superconductors. Front. Phys. , 2017, 12(5): 127403.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0683-9
https://academic.hep.com.cn/fop/CN/Y2017/V12/I5/127403
1 X. G.Wen and Q.Niu, Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces, Phys. Rev. B41(13), 9377 (1990)
https://doi.org/10.1103/PhysRevB.41.9377
2 C.Nayakand F.Wilczek, 2n-quasihole states realize 2n−1-dimensional spinor braiding statistics in paired quantum Hall states, Nucl. Phys. B479(3), 529(1996)
https://doi.org/10.1016/0550-3213(96)00430-0
3 S.Murakami, N.Nagaosa, and S. C.Zhang, Spin-Hall insulator, Phys. Rev. Lett.93(15), 156804(2004)
https://doi.org/10.1103/PhysRevLett.93.156804
4 C. L.Kaneand E. J.Mele, Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett.95(14), 146802(2005)
https://doi.org/10.1103/PhysRevLett.95.146802
5 A.Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321(1), 2 (2006)
https://doi.org/10.1016/j.aop.2005.10.005
6 D. H.Lee, G. M.Zhang, and T.Xiang, Edge solitons of topological insulators and fractionalized quasiparticles in two dimensions, Phys. Rev. Lett.99(19), 196805(2007)
https://doi.org/10.1103/PhysRevLett.99.196805
7 R. E.Prangeand S. M.Girvin, The Quantum Hall Effect, Berlin: Springer-Verlag, 1987
https://doi.org/10.1007/978-1-4684-0499-9
8 D. J.Thouless, M.Kohmoto, M. P.Nightingale, and M.denNijs, Quantized Hall conductance in a twodimensional periodic potential, Phys. Rev. Lett. 49(6), 405(1982)
https://doi.org/10.1103/PhysRevLett.49.405
9 V.Gurarie, L.Radzihovsky, and A. V.Andreev, Quantum phase transitions across a p-wave Feshbach resonance, Phys. Rev. Lett. 94(23), 230403(2005)
https://doi.org/10.1103/PhysRevLett.94.230403
10 S.Tewari, S.Das Sarma, C.Nayak, C.Zhang, and P.Zoller, Quantum computation using vortices and Majorana zero modes of a px+ ipysuperfluid of fermionic cold atoms, Phys. Rev. Lett.98(1), 010506(2007)
https://doi.org/10.1103/PhysRevLett.98.010506
11 M. Z.Hasanand C. L.Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045(2010)
https://doi.org/10.1103/RevModPhys.82.3045
12 X. L.Qiand S. C.Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057(2011)
https://doi.org/10.1103/RevModPhys.83.1057
13 G. E.Volovik, The Universe in a Helium Droplet, New York: Oxford Science Publications, 2003
14 A. P.Machenzieand Y.Maeno, The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing, Rev. Mod. Phys. 75(657), 2003(2003)
15 E.Majorana, Teoria simmetrica dell’elettrone e del positrone, Nuovo Cim. 14(4), 171(1937)
https://doi.org/10.1007/BF02961314
16 N.Readand D.Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect, Phys. Rev. B61(15), 10267(2000)
https://doi.org/10.1103/PhysRevB.61.10267
17 T.Mizushima, M.Ichioka, and K.Machida, Role of the Majorana fermion and the edge mode in chiral superfluidity near a p-wave Feshbach resonance, Phys. Rev. Lett. 101(15), 150409(2008)
https://doi.org/10.1103/PhysRevLett.101.150409
18 G.Mooreand N.Read, Nonabelions in the fractional quantum Hall effect, Nucl. Phys. B360(2–3), 362(1991)
https://doi.org/10.1016/0550-3213(91)90407-O
19 M.Greiter, X. G.Wen, and F.Wilczek, Paired Hall states, Nucl. Phys. B374(3), 567(1992)
https://doi.org/10.1016/0550-3213(92)90401-V
20 L.Fuand C. L.Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator, Phys. Rev. Lett.100(9), 096407(2008)
https://doi.org/10.1103/PhysRevLett.100.096407
21 J. D.Sau, R. M.Lutchyn, S.Tewari, and S.Das Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104(4), 040502(2010)
https://doi.org/10.1103/PhysRevLett.104.040502
22 J.Alicea, Majorana fermions in a tunable semiconductor device, Phys. Rev. B81(12), 125318(2010)
https://doi.org/10.1103/PhysRevB.81.125318
23 M.Matsumotoand R.Heeb, Vortex charging effect in a chiral px±ipy-wave superconductor, Phys. Rev. B65(1), 014504(2001)
https://doi.org/10.1103/PhysRevB.65.014504
24 L.Yu,Bound state in superconductors with paramagnetic impurities, Acta. Phys. Sin. 21, 75(1965)
25 H.Shiba, Classical spins in superconductors, Prog. Theor. Phys. 40(3), 435(1968)
https://doi.org/10.1143/PTP.40.435
26 A. V.Balatsky, I.Vekhter, and J. X.Zhu, Impurityinduced states in conventional and unconventional superconductors, Rev. Mod. Phys. 78(2), 373(2006)
https://doi.org/10.1103/RevModPhys.78.373
27 Y.Chenand C. S.Ting, States of local moment induced by nonmagnetic impurities in cuprate superconductors, Phys. Rev. Lett. 92(7), 077203(2004)
https://doi.org/10.1103/PhysRevLett.92.077203
28 M.Takigawa, M.Ichioka, K.Kuroki, and Y.Tanaka, Electronic structure and spontaneous internal field around nonmagnetic impurities in spin-triplet chiral p- wave superconductors, Phys. Rev. B72(22), 224501(2005)
https://doi.org/10.1103/PhysRevB.72.224501
29 H.Hu, L.Jiang, H.Pu, Y.Chen, and X. J.Liu, Universal impurity-induced bound state in topological superfluids, Phys. Rev. Lett. 110(2), 020401(2013)
https://doi.org/10.1103/PhysRevLett.110.020401
30 Y.Tanuma,N.Hayashi, Y.Tanaka, and A. A.Golubov, Model for vortex-core tunneling spectroscopy of chiral p- wave superconductors via odd-frequency pairing states, Phys. Rev. Lett.102(11), 117003 (2009)
https://doi.org/10.1103/PhysRevLett.102.117003
31 Q.Han, Z. D.Wang, Q. H.Wang, and T.Xia, Vortex state in NaxCoO2·yH2O: px±ipy-wave versus dx2−yidxy-wave pairing, Phys. Rev. Lett.92(2), 027004(2004)
https://doi.org/10.1103/PhysRevLett.92.027004
32 C.Caroli, P. G.de Gennes, and J.Matricon, Bound Fermion states on a vortex line in a type II superconductor, Phys. Lett.9(4), 307(1964)
https://doi.org/10.1016/0031-9163(64)90375-0
33 G. E.Volovik, Superconductivity with lines of gap nodes: Density of states in the vortex, Pis’ma ZhETF58, 457(1993) [JETP Lett. 58, 469(1993)]
34 Y.Chenand C. S.Ting, Magnetic-field-induced spindensity wave in high-temperature superconductors, Phys. Rev. B65(18), 180513(2002)
https://doi.org/10.1103/PhysRevB.65.180513
35 G.Volovik, Fermion zero modes on vortices in chiral superconductors, JETP Lett.70(9), 609(1999)
https://doi.org/10.1134/1.568223
36 D. A.Ivanov, Non-Abelian statistics of half-quantum vortices in p-wave superconductors, Phys. Rev. Lett.86(2), 268(2001)
https://doi.org/10.1103/PhysRevLett.86.268
37 A. S.Mel’nikov, D. A.Ryzhov, and M. A.Silaev, Electronic structure and heat transport of multi-vortex configurations in mesoscopic superconductors, Phys. Rev. B78(6), 064513(2008)
https://doi.org/10.1103/PhysRevB.78.064513
38 A. S.Mel’nikovand M. A.Silaev, Inter-vortex quasiparticle tunneling and the electronic structure of multivortex configurations in type-II superconductors, JETP Lett. 83(12), 578(2006)
https://doi.org/10.1134/S0021364006120113
39 Y.Wangand A. H.MacDonald, Mixed-state quasiparticle spectrum for d-wave superconductors, Phys. Rev. B52(6), R3876(1995)
https://doi.org/10.1103/PhysRevB.52.R3876
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed