The study of hyperon decays at the Beijing Electron Spectrometer III (BESIII) is proposed to investigate the events of J/φ decay into hyperon pairs, which provide a pristine experimental environment at the Beijing Electron–Positron Collider II. About 106–108 hyperons, i.e., ?, Σ,Ξand Ω, will be produced in the J/φ and φ(2S) decays with the proposed data samples at BESIII. Based on these samples, the measurement sensitivity of the branching fractions of the hyperon decays is in the range of 10-5–10-8. In addition, with the known center-of-mass energy and “tag technique”, rare decays and decays with invisible final states can be probed.
M.Ablikim, et al.[BESIII Collaboration], Design and construction of the BESIII Detector, Nucl. Instrum. Meth. A614, 345(2010), arXiv: 0911.4960 [physics.insdet]
M.Kobayashiand T.Maskawa, CP-violation in the renormalizable theory of weak interaction,Prog. Theor. Phys.49(2), 652(1973) https://doi.org/10.1143/PTP.49.652
6
E.Blucher, E.De Lucia, G.Isidori, V.Lubicz, H.Abele, V.Cirigliano, R.Flores-Mendieta, J.Flynn, C.Gatti, A.Manohar, W.Marciano, V.Pavlunin, D.Pocanic, F.Schwab, A.Sirlin, C.Tarantino, and M.Velasco, Status of the Cabibbo angle, arXiv: hep-ph/0512039 (2005)
M.Antonelli, V.Cirigliano, G.Isidori, F.Mescia, M.Moulson, H.Neufeld, E.Passemar, M.Palutan, B.Sciascia, M.Sozzi, R.Wanke, and O. P.Yushchenko, An evaluation of |Vus| and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays, Eur. Phys. J. C69(3), 399(2010) https://doi.org/10.1140/epjc/s10052-010-1406-3
G. S.Yangand H. C.Kim, Hyperon Semileptonic decay constants with flavor SU(3) symmetry breaking,Phys. Rev. C92, 035206(2015), arXiv: 1504.04453 [hep-ph]
15
A.Faessler, T.Gutsche, B. R.Holstein, M. A.Ivanov, J. G.Korner, and V. E.Lyubovitskij, Semileptonic decays of the light JP= 1/2+ ground state baryon octet, Phys. Rev. D78(9), 094005(2008) https://doi.org/10.1103/PhysRevD.78.094005
L. S.Geng, J. M.Camalich, and M. J. V.Vacas, SU(3)- breaking corrections to the hyperon vector coupling f(0) in covariant baryon chiral perturbation theory, Phys. Rev. D79(9), 094022(2009) https://doi.org/10.1103/PhysRevD.79.094022
18
T.Ledwig, J. M.Camalich, L. S.Geng, and M. J. V.Vacas, Octet-baryon axial-vector charges and SU(3)-breaking effects in the semileptonic hyperon decays, Phys. Rev. D90(5), 054502(2014) https://doi.org/10.1103/PhysRevD.90.054502
J.Bernstein, G.Feinberg, and T. D.Lee, Possible C, Tnoninvariance in the electromagnetic interaction, Phys. Rev.139(6B), B1650(1965) https://doi.org/10.1103/PhysRev.139.B1650
M. K.Gaillard, X.Li, and S.Rudaz, Constituent gluons and a new mechanism for radiative weak decays of hyperons, Phys. Lett. B158(2), 158(1985) https://doi.org/10.1016/0370-2693(85)91384-X
24
P.Żenczykowski, Joint description of weak radiative and nonleptonic hyperon decays in broken SU(3), Phys. Rev. D73(7), 076005(2006), arXiv: hep-ph/0512122 https://doi.org/10.1103/PhysRevD.73.076005
J. W.Bos, D.Chang, S. C.Lee, Y. C.Lin, and H. H.Shih, Hyperon weak radiative decays in chiral perturbation theory, Phys. Rev. D54(5), 3321(1996), arXiv: hep-ph/9601299 https://doi.org/10.1103/PhysRevD.54.3321
32
B. V.Martemyanov, Electromagnetic transition form factors of Ʌ→ne+e− weak dilepton decay, Phys. At. Nucl. 66(4), 737(2003) [Yad. Fiz.66, 768(2003)] https://doi.org/10.1134/1.1575573
33
J. R.Batley, et al.[NA48 Collaboration], First observation and branching fraction and decay parameter measurements of the weak radiative decay Ξ0→Ʌe+e−, Phys. Lett. B650(1), 1 (2007), arXiv: hep-ex/ 0703023 https://doi.org/10.1016/j.physletb.2007.04.066
34
L.Bergström, R.Safadi, and P.Singer, Phenomenology of Σ+→pl+l−and the structure of the weak nonleptonic Hamiltonian, Z. Phys. C37(2), 281(1988) https://doi.org/10.1007/BF01579914
35
X. G.He, J.Tandean, and G.Valencia, Decay Σ+→pl+l− within the standard model, Phys. Rev. D72(7), 074003(2005), arXiv: hep-ph/0506067 https://doi.org/10.1103/PhysRevD.72.074003
36
D. S.Gorbunovand V. A.Rubakov, Kaon physics with light sgoldstinos and parity conservation, Phys. Rev. D64(5), 054008(2001), arXiv: hep-ph/0012033 https://doi.org/10.1103/PhysRevD.64.054008
37
F.Dettori[LHCb Collaboration], Evidence for the rare decay Σ+→pμ+μ− at LHCb,arXiv: 1611.06717 [hepex] (2016)
A. J.Buras, M.Gorbahn, U.Haisch, and U.Nierste, Rare decay K+→μν+ν−at the next-to-next-to-leading order in QCD, Phys. Rev. Lett.95(26), 261805(2005), arXiv: hep-ph/0508165 https://doi.org/10.1103/PhysRevLett.95.261805
40
A. J.Buras, S.Uhlig, and F.Schwab, Waiting for precise measurements of K+→μν+ν−and KL→π0ν+ν−, Rev. Mod. Phys. 80(3), 965(2008), arXiv: hep-ph/0405132 https://doi.org/10.1103/RevModPhys.80.965
41
A. J.Buras, D.Buttazzo, and R.Knegjens, K+→μν+ν− and ε’/εin simplified new physics models, J. High Energy Phys.1511, 166(2015), arXiv: 1507.08672 [hep-ph]
42
XuFeng, Private discussion
43
Y.Fukuda, et al.[SuperKamiokande Collaboration], Measurements of the solar neutrino flux from Super- Kamiokande’s first 300 days, Phys. Rev. Lett.81(6), 1158(1998) https://doi.org/10.1103/PhysRevLett.81.1158
44
Y.Fukuda, et al.[SuperKamiokande Collaboration], Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett.81(8), 1562(1998) https://doi.org/10.1103/PhysRevLett.81.1562
45
Y.Fukuda, et al.[SuperKamiokande Collaboration], Measurement of the flux and zenith-angle distribution of upward throughgoing muons by Super-Kamiokande, Phys. Rev. Lett.82(13), 2644(1999) https://doi.org/10.1103/PhysRevLett.82.2644
46
Y.Fukuda, et al.[SuperKamiokande Collaboration], Tau neutrinos favored over sterile neutrinos in atmospheric muon neutrino oscillations, Phys. Rev. Lett.85(19), 3999(2000) https://doi.org/10.1103/PhysRevLett.85.3999
S.Fukuda, et al.[Super-Kamiokande Collaboration], Solar 8B and hep neutrino measurements from 1258 days of Super-Kamiokande data, Phys. Rev. Lett.86(25), 5651(2001) https://doi.org/10.1103/PhysRevLett.86.5651
49
Y.Ashie, et al.[Super-Kamiokande Collaboration], Evidence for an oscillatory signature in atmospheric neutrino oscillations, Phys. Rev. Lett.93(10), 101801(2004) https://doi.org/10.1103/PhysRevLett.93.101801
50
K.Eguchi, et al.[KamLAND Collaboration], First Results from KamLAND: Evidence for reactor antineutrino disappearance, Phys. Rev. Lett.90(2), 021802(2003) https://doi.org/10.1103/PhysRevLett.90.021802
51
T.Araki, et al.[KamLAND Collaboration], Measurement of neutrino oscillation with KamLAND: Evidence of spectral distortion, Phys. Rev. Lett.94(8), 081801(2005) https://doi.org/10.1103/PhysRevLett.94.081801
52
Q. R.Ahmad, et al.[SNO Collaboration], Direct evidence for neutrino flavor transformation from neutralcurrent interactions in the Sudbury neutrino observatory, Phys. Rev. Lett.89(1), 011301(2002) https://doi.org/10.1103/PhysRevLett.89.011301
53
Q. R.Ahmad, et al.[SNO Collaboration], Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters, Phys. Rev. Lett.89(1), 011302(2002) https://doi.org/10.1103/PhysRevLett.89.011302
54
Q. R.Ahmad, et al.[SNO Collaboration], Measurement of the total active 8B solar neutrino flux at the Sudbury neutrino observatory with enhanced neutral current sensitivity, Phys. Rev. Lett.92(18), 181301(2004) https://doi.org/10.1103/PhysRevLett.92.181301
55
B.Aharmim, et al.[SNO Collaboration], Electron energy spectra, fluxes, and day-night asymmetries of 8B solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory, Phys. Rev. C72(5), 055502(2005) https://doi.org/10.1103/PhysRevC.72.055502
56
F. P.An, et al.[Daya Bay Collaboration], Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett.108(17), 171803(2012) https://doi.org/10.1103/PhysRevLett.108.171803
57
B.Pontecorvo, Inverse βprocesses and nonconservation of lepton charge,Sov. Phys. JETP7, 172(1958) [Zh. Eksp. Teor. Fiz.34, 247(1957)]
C.Barbero,L. F.Li, G.López Castro, and A.Mariano, Matrix elements of four-quark operators and ΔL= 2 hyperon decays, Phys. Rev. D87(3), 036010(2013) https://doi.org/10.1103/PhysRevD.87.036010
63
A. D.Sakharov, Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe, Pis’ma Z. Eksp. Teor. Fiz. 5, 32(1967) [JETP Lett.5, 24(1967)] [Sov. Phys. Usp.34, 392(1991)] [Usp. Fiz. Nauk161, 61(1991)]
64
J. C.Patiand A.Salam, Unified lepton-hadron symmetry and a gauge theory of the basic interactions, Phys. Rev. D8(4), 1240(1973) https://doi.org/10.1103/PhysRevD.8.1240
R. N.Mohapatraand R. E.Marshak, Quark-lepton symmetry and B–Las the U(1) generator of the electroweak symmetry group, Phys. Lett. B91, 222(1980) https://doi.org/10.1016/0370-2693(80)90436-0
67
H.An, S. L.Chen, R. N.Mohapatra, and Y.Zhang, Leptogenesis as a common origin for matter and dark matter, J. High Energy Phys.2010(3), 124(2010) https://doi.org/10.1007/JHEP03(2010)124
68
M. E.McCracken, et al.[CLAS Collaboration], Search for baryon-number and lepton-number violating decays of Ʌ hyperons using the CLAS detector at Jefferson Laboratory, Phys. Rev. D92(7), 072002(2015), arXiv: 1507.03859 [hep-ex]
69
X. W.Kang, H. B.Li, and G. R.Lu, Study of Λ−Λ¯ oscillation in quantum coherent ΛΛ¯- by using J/φ→ΛΛ¯- decay, Phys. Rev. D81(5), 051901(2010) https://doi.org/10.1103/PhysRevD.81.051901
70
Z.Berezhianiand A.Vainshtein, Neutron-antineutron oscillation as a signal of CP violation, arXiv: 1506.05096 [hep-ph] (2015)
J.Tandean, New physics and CP violation in hyperon nonleptonic decays, Phys. Rev. D69(7), 076008(2004), arXiv: hep-ph/0311036 https://doi.org/10.1103/PhysRevD.69.076008
77
J.Tandeanand G.Valencia, CP violation in hyperon nonleptonic decays within the Standard Model, Phys. Rev. D67(5), 056001(2003), arXiv: hep-ph/0211165 https://doi.org/10.1103/PhysRevD.67.056001
A.Abdesselam, et al.[Belle Collaboration], Observation of transverse Λ/Λ¯ hyperon polarization in e+e− annihilation at Belle, arXiv: 1611.06648 [hep-ex] (2016)
83
A. E.Bondar, et al.[Charm-Tau Factory Collaboration], Project of a super charm-tau factory at the Budker Institute of Nuclear Physics in Novosibirsk, Phys. At. Nucl.76(9), 1072(2013) [Yad. Fiz.76(9), 1132(2013)] https://doi.org/10.1134/S1063778813090032
84
Z.Zhou, Q.Luo, L.Wang, W.Xu, and B.Zhang, “Preliminary Concept and Key Technologies of HIEPA Accelerator”, talk at the 7th International Particle Accelerator Conference (IPAC 2016), 8–13 May 2016, Busan, Korea
85
D.Kimura, T.Morozumi, and H.Umeeda, Analysis of Dalitz decays with intrinsic parity violating interactions in resonance chiral perturbation theory, arXiv: 1609.09235 [hep-ph] (2016)
N. H.Christ, et al.[RBC and UKQCD Collaborations], Prospects for a lattice computation of rare kaon decay amplitudes II K→πννdecays, Phys. Rev. D93(11), 114517(2016), arXiv: 1605.04442 [hep-lat]
88
N. H.Christ, X.Feng, A.Jttner, A.Lawson, A.Portelliand C. T.Sachrajda, Exploratory lattice QCD study of the rare kaon decay K→πνν, PoS CD15, 033(2016)
89
N. H.Christ, et al.[RBC and UKQCD Collaborations], Prospects for a lattice computation of rare kaon decay amplitudes: K→πl+l− decays, Phys. Rev. D92(9), 094512(2015), arXiv: 1507.03094 [hep-lat]
90
T. D.Leeand C. N.Yang, General partial wave analysis of the decay of a hyperon of spin 1/2, Phys. Rev.108(6), 1645(1957) https://doi.org/10.1103/PhysRev.108.1645
91
A.Kadeer, J. G.Körner, and U.Moosbrugger, Helicity analysis of semileptonic hyperon decays including lepton-mass effects, Eur. Phys. J. C59(1), 27 (2009), arXiv: hep-ph/0511019 https://doi.org/10.1140/epjc/s10052-008-0801-5