Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (3): 127211   https://doi.org/10.1007/s11467-017-0692-8
  本期目录
Crystal growth and electrical transport properties of niobium and tantalum monopnictide and dipnictide semimetals
Hong Lu1, Shuang Jia1,2()
1. International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
2. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
 全文: PDF(2437 KB)  
Abstract

The discovery of the first Weyl semimetal tantalum monoarsenide has greatly promoted physical research on the niobium and tantalum pnictide compounds. Crystallizing into the NbAs- and OsGe2-type structures, these mono- and di-pnictide semimetals manifest exotic electrical transport properties in magnetic field, which only occur in their single-crystalline forms. All the unusual electrical properties correspond to their poor carriers, which are indeed vulnerable to various crystal defects. In this review article, we present a comprehensive comparison of the crystal growth and electrical transport properties of the two semimetal families. We then discuss in detail the possible characteristic transport features, such as the chiral anomaly of Weyl quasiparticles. We emphasize the importance of crystal growth and sample manipulation for exploring the unique topological properties of Weyl semimetals in the future.

Key wordsWeyl semimtal    crystal growth    electrical transport
收稿日期: 2017-03-13      出版日期: 2017-05-31
Corresponding Author(s): Shuang Jia   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(3): 127211.
Hong Lu, Shuang Jia. Crystal growth and electrical transport properties of niobium and tantalum monopnictide and dipnictide semimetals. Front. Phys. , 2017, 12(3): 127211.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0692-8
https://academic.hep.com.cn/fop/CN/Y2017/V12/I3/127211
14 P.Alemany and S.Alvarez, Theoretical study of bonding and electrical conductivity in compounds with the NbAs2 structure,Inorg. Chem.31(14), 3007 (1992)
https://doi.org/10.1021/ic00040a005
15 J.Xu, M.Greenblatt, T.Emge, P.Hohn, T.Hughbanks, and Y.Tian, Crystal structure, electrical transport, and magnetic properties of niobium monophosphide, Inorg. Chem.35(4), 845 (1996)
https://doi.org/10.1021/ic950826f
16 B.Saparov, J. E.Mitchell, and A. S.Sefat, Properties of binary transition-metal arsenides (TAs), Supercond. Sci. Technol.25(8), 084016 (2012)
https://doi.org/10.1088/0953-2048/25/8/084016
17 F.Failamani, P.Broz, D.Macciò, S.Puchegger, H.Müller, L.Salamakha, H.Michor, A.Grytsiv, A.Saccone, E.Bauer, G.Giester, and P.Rogl, Constitution of the systems {V, Nb, Ta}Sb and physical properties of di-antimonides {V, Nb, Ta}Sb2, Intermetallics65, 94 (2015)
https://doi.org/10.1016/j.intermet.2015.05.006
18 S. Y.Xu, I.Belopolski, N.Alidoust, M.Neupane, G.Bian, C.Zhang, R.Sankar, G.Chang, Z.Yuan, C. C.Lee, S.M.Huang, H.Zheng, J.Ma, D. S.Sanchez, B.Wang, A.Bansil, F.Chou, P. P.Shibayev, H.Lin, S.Jia, and M. Z.Hasan, Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science349(6248), 613 (2015)
https://doi.org/10.1126/science.aaa9297
19 B. Q.Lv, H. M.Weng, B. B.Fu, X. P.Wang, H.Miao, J.Ma, P.Richard, X. C.Huang, L. X.Zhao, G. F.Chen, Z.Fang, X.Dai, T.Qian, and H.Ding, Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X5(3), 031013 (2015)
https://doi.org/10.1103/PhysRevX.5.031013
20 L. X.Yang, Z. K.Liu, Y.Sun, H.Peng, H. F.Yang, T.Zhang, B.Zhou, Y.Zhang, Y. F.Guo, M.Rahn, D.Prabhakaran, Z.Hussain, S. K.Mo, C.Felser, B.Yan, and Y. L.Chen, Weyl semimetal phase in the noncentrosymmetric compound TaAs, Nat. Phys.11(9), 728 (2015)
21 S. Y.Xu, N.Alidoust, I.Belopolski, Z.Yuan, G.Bian, T. R.Chang, H.Zheng, V. N.Strocov, D. S.Sanchez, G.Chang, C.Zhang, D.Mou, Y.Wu, L.Huang, C. C.Lee, S. M.Huang, B. K.Wang, A.Bansil, H. T.Jeng, T.Neupert, A.Kaminski, H.Lin, S.Jia, and M. Z.Hasan, Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide, Nat. Phys.11(9), 748 (2015)
22 N.Xu, H. M.Weng, B. Q.Lv, C. E.Matt, J.Park, F.Bisti, V. N.Strocov, D.Gawryluk, E.Pomjakushina, K.Conder, N. C.Plumb, M.Radovic, G.Autès, O. V.Yazyev, Z.Fang, X.Dai, T.Qian, J.Mesot, H.Ding, and M.Shi, Observation of Weyl nodes and Fermi arcs in tantalum phosphide, Nat. Commun.7, 11006 (2016)
https://doi.org/10.1038/ncomms11006
23 S. Y.Xu, I.Belopolski, D. S.Sanchez, C.Zhang, G.Chang, C.Guo, G.Bian, Z.Yuan, H.Lu, T.-R.Chang, P. P.Shibayev, M. L.Prokopovych, N.Alidoust, H.Zheng, C.-C.Lee, S.-M.Huang, R.Sankar, F.Chou, C.-H.Hsu, H.-T.Jeng, A.Bansil, T.Neupert, V. N.Strocov, H.Lin, S.Jia, and M. Z.Hasan, Experimental discovery of a topological Weyl semimetal state in TaP, Sci. Adv.1(10), e1501092 (2015)
https://doi.org/10.1126/sciadv.1501092
24 C. L.Zhang, Z. J.Yuan, Q. D.Jiang, Z.Lin, B. B.Tong, X. X.Zhang, C.Xie, and S.Jia, Electron scattering in tantalum monoarsenide, Phys. Rev. B95(8), 085202 (2017)
https://doi.org/10.1103/PhysRevB.95.085202
25 C.Shekhar, A. K.Nayak, Y.Sun, M.Schmidt, M.Nicklas, I.Leermakers, U.Zeitler, Y.Skourski, J.Wosnitza, Z.Liu, Y.Chen, W.Schnelle,H.Borrmann, Y.Grin, C.Felser, and B.Yan, Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP, Nat. Phys.10, 1038 (2015)
1 D.Johrendt, C.Hieke, and T.Stürzer, 2.05- transitionmetal pnictides, in: Comprehensive Inorganic Chemistry {II} (Second Edition), edited by Jan ReedijkKenneth Poeppelmeier, Amsterdam: Elsevier, 2013, pp. 111–135
2 N.Schönberg, W. G.Overend, A.Munthe-Kaas, and N. A.Sörensen, An X-ray investigation of transition metal phosphides, Acta Chem. Scand. 8, 226 (1954)
https://doi.org/10.3891/acta.chem.scand.08-0226
26 X.Huang, L.Zhao, Y.Long, P.Wang, D.Chen, Z.Yang, H.Liang, M.Xue, H.Weng, Z.Fang, X.Dai, and G.Chen, Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs, Phys. Rev. X5(3), 031023 (2015)
https://doi.org/10.1103/PhysRevX.5.031023
27 C. L.Zhang, S. Y.Xu, I.Belopolski, Z.Yuan, Z.Lin, B.Tong, G.Bian, N.Alidoust, C. C.Lee, S. M.Huang, T. R.Chang, G.Chang, C. H.Hsu, H. T.Jeng, M.Neupane, D. S.Sanchez, H.Zheng, J.Wang, H.Lin, C.Zhang, H. Z.Lu, S. Q.Shen, T.Neupert, M. Z.Hasan, and S.Jia, Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal, Nat. Commun. 7, 10735 (2016)
https://doi.org/10.1038/ncomms10735
28 H.Zheng, S.-Y.Xu, G.Bian, C.Guo, G.Chang, D. S.Sanchez, I.Belopolski, C.-C.Lee, S.-M.Huang, X.Zhang, R.Sankar, N.Alidoust, T.-R.Chang, F.Wu, T.Neupert, F.Chou, H.-T.Jeng, N.Yao, A.Bansil, S.Jia, H.Lin, and M. Z.Hasan, Atomic-scale visualization of quantum interference on a Weyl semimetal surface by Scanning Tunneling Microscopy, ACS Nano10, 1378 (2016)
https://doi.org/10.1021/acsnano.5b06807
29 R.Batabyal, N.Morali, N.Avraham, Y.Sun, M.Schmidt, C.Felser, A.Stern, B.Yan, and H.Beidenkopf, Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions, Sci. Adv.2(8), e1600709 (2016)
https://doi.org/10.1126/sciadv.1600709
3 H.Boller and E.Parthé, The transposition structure of NbAs and of similar monophosphides and arsenides of niobium and tantalum, Acta Crystallogr. 16(11), 1095 (1963)
https://doi.org/10.1107/S0365110X63002930
4 S.Furuseth and A.Kjekshus, The crystal structure of NbAs (comments), Acta Crystallogr.17(8), 1077 (1964)
https://doi.org/10.1107/S0365110X64002754
30 H.Inoue, A.Gyenis, Z.Wang, J.Li, S. W.Oh, S.Jiang, N.Ni, B. A.Bernevig, and A.Yazdani, Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal, Science351(6278), 1184 (2016)
https://doi.org/10.1126/science.aad8766
31 S.Jia, S. Y.Xu, and M. Z.Hasan, Weyl semimetals, Fermi arcs and chiral anomalies, Nat. Mater.15(11), 1140 (2016)
https://doi.org/10.1038/nmat4787
32 K.Wang, D.Graf, L.Li, L.Wang, and C.Petrovic, Anisotropic giant magnetoresistance in NbSb2, Sci. Rep.4, 7328 (2014)
https://doi.org/10.1038/srep07328
33 D.Wu, J.Liao, W.Yi, X.Wang, P.Li, H.Weng, Y.Shi, Y.Li, J.Luo, X.Dai, and Z.Fang, Giant semiclassical magnetoresistance in high mobility TaAs2 semimetal, Appl. Phys. Lett.108, 042105 (2016)
https://doi.org/10.1063/1.4940924
34 B.Shen, X.Deng, G.Kotliar, and N.Ni, Fermi surface topology and negative longitudinal magnetoresistance observed in the semimetal NbAs2, Phys. Rev. B93(19), 195119 (2016)
https://doi.org/10.1103/PhysRevB.93.195119
35 Z.Yuan, H.Lu, Y.Liu, J.Wang, and S.Jia, Large magnetoresistance in compensated semimetals TaAs2 and NbAs2, Phys. Rev. B93(18), 184405 (2016)
https://doi.org/10.1103/PhysRevB.93.184405
36 Y.Li, L.Li, J.Wang, T.Wang, X.Xu, C.Xi, C.Cao, and J.Dai, Resistivity plateau and negative magnetoresistance in the topological semimetal TaSb2, Phys. Rev. B94(12), 121115 (2016)
https://doi.org/10.1103/PhysRevB.94.121115
37 Y.Sun, S. C.Wu, and B.Yan, Topological surface states and Fermi arcs of the noncentrosymmetric Weyl semimetals TaAs, TaP, NbAs, and NbP, Phys. Rev. B92(11), 115428 (2015)
https://doi.org/10.1103/PhysRevB.92.115428
5 S.Furuseth, A.Kjekshus, S.Åsen, H.Halvarson, and L.Nilsson, 0, On the arsenides and antimonides of niobium, Acta Chem. Scand.18, 1180 (1964)
https://doi.org/10.3891/acta.chem.scand.18-1180
6 S.Furuseth, K.Selte, A.Kjekshus, S.Gronowitz, R. A.Hoffman, and A.Westerdahl, On the arsenides and antimonides of tantalum, Acta Chem. Scand.19, 95 (1965)
https://doi.org/10.3891/acta.chem.scand.19-0095
7 J. J.Murray, J. B.Taylor, L. D.Calvert, Y.Wang, E. J.Gabe, and J. G.Despault, Phase relationships and thermodynamics of refractory metal pnictides: The metal-rich tantalum arsenides, J. Less Common Met.46(2), 311 (1976)
https://doi.org/10.1016/0022-5088(76)90220-4
8 S.-M.Huang,S.-Y.Xu, I.Belopolski, C.-C.Lee, G.Chang, B. K.Wang, N.Alidoust, G.Bian, M.Neupane, C.Zhang, S.Jia, A.Bansil, H.Lin, and M. Z.Hasan, A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class, Nat. Commun.6, 7373 (2015)
https://doi.org/10.1038/ncomms8373
38 M. Z.Hasan and C. L.Kane, Topological insulators, Rev. Mod. Phys.82(4), 3045 (2010)
https://doi.org/10.1103/RevModPhys.82.3045
39 Z.Wang, Y.Sun, X. Q.Chen, C.Franchini, G.Xu, H.Weng, X.Dai, and Z.Fang, Dirac semimetal and topological phase transitions in A3Bi (A= Na, K, Rb), Phys. Rev. B85(19), 195320 (2012)
https://doi.org/10.1103/PhysRevB.85.195320
9 H.Weng, C.Fang, Z.Fang, B. A.Bernevig, and X.Dai, Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides, Phys. Rev. X5(1), 011029 (2015)
https://doi.org/10.1103/PhysRevX.5.011029
10 F.Hulliger, New representatives of the NbAs2 and ZrAs2 structures, Nature204(4960), 775 (1964)
https://doi.org/10.1038/204775a0
11 W.Bensch and W.Heid, NbAs2, Acta Crystallogr. C51(11), 2205 (1995)
https://doi.org/10.1107/S0108270195007062
12 G. S.Saini, L. D.Calvert, and J. B.Taylor, Preparation and characterization of crystals of MX- and MX2- type arsenides of niobium and tantalum, Can. J. Chem.42(3), 630 (1964)
https://doi.org/10.1139/v64-092
40 Z.Wang, H.Weng, Q.Wu, X.Dai, and Z.Fang, Threedimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B88(12), 125427 (2013)
https://doi.org/10.1103/PhysRevB.88.125427
41 X.Wan, A. M.Turner, A.Vishwanath, and S. Y.Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B83(20), 205101 (2011)
https://doi.org/10.1103/PhysRevB.83.205101
13 R.Nesper, The Zintl–Klemm concept — A historical survey, Zeitschrift für anorganische und allgemeine Chemie640, 2639 (2014)
https://doi.org/10.1002/zaac.201400403
42 G.Xu, H.Weng, Z.Wang, X.Dai, and Z.Fang, Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4, Phys. Rev. Lett.107(18), 186806 (2011)
https://doi.org/10.1103/PhysRevLett.107.186806
43 P.Hosur and X.Qi, Recent developments in transport phenomena in Weyl semimetals, C. R. Phys.14(9–10), 857 (2013)
https://doi.org/10.1016/j.crhy.2013.10.010
44 J. J.Murray, J. B.Taylor, and L.Usner, Halogen transport of molybdenum arsenides and other transition metal pnictides, J. Cryst. Growth15(3), 231 (1972)
https://doi.org/10.1016/0022-0248(72)90123-6
45 J.Hu, J. Y.Liu, D.Graf, S. M. A.Radmanesh, D. J.Adams, A.Chuang, Y.Wang, I.Chiorescu, J.Wei, L.Spinu, and Z. Q.Mao, Berry phase and Zeeman splitting of Weyl semimetal TaP, Sci. Rep.6(1), 18674 (2016)
https://doi.org/10.1038/srep18674
46 C.Zhang, C.Guo, H.Lu, X.Zhang, Z.Yuan, Z.Lin, J.Wang, and S.Jia, Large magnetoresistance over an extended temperature regime in monophosphides of tantalum and niobium, Phys. Rev. B92(4), 041203 (2015)
https://doi.org/10.1103/PhysRevB.92.041203
47 F.Arnold, C.Shekhar, S. C.Wu, Y.Sun, R. D.dos Reis, N.Kumar, M.Naumann, M. O.Ajeesh, M.Schmidt, A. G.Grushin, J. H.Bardarson, M.Baenitz, D.Sokolov, H.Borrmann, M.Nicklas, C.Felser, E.Hassinger, and B.Yan, Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP, Nat. Commun.7, 11615 (2016)
https://doi.org/10.1038/ncomms11615
48 Z.Li, H.Chen, S.Jin, D.Gan, W.Wang, L.Guo, and X.Chen, Weyl semimetal TaAs: Crystal growth, morphology, and thermodynamics, Cryst. Growth Des.16(3), 1172 (2016)
https://doi.org/10.1021/acs.cgd.5b01758
49 P.Schmidt, M.Binnewies, R.Glaum, and M.Schmidt, Chemical vapor transport reactions-methods, materials, modeling, in: Advanced Topics on crystal growth, In-Tech,2013, Chap. 9
https://doi.org/10.5772/55547
50 P. C.Canfield and ZFisk, Growth of single crystals from metallic fluxes, Philos. Mag. B65(6), 1117 (1992)
https://doi.org/10.1080/13642819208215073
51 J.Zhang, F. L.Liu, J. K.Dong, X.Yang, N. N.Li, W. G.Yang, and S. Y.Li, Structural and transport properties of the Weyl semimetal NbAs at high pressure, Chin. Phys. Lett.32(9), 097102 (2015)
https://doi.org/10.1088/0256-307X/32/9/097102
52 T.Besara, D. A.Rhodes, K. W.Chen, S.Das, Q. R.Zhang, J.Sun, B.Zeng, Y.Xin, L.Balicas, R. E.Baumbach, E.Manousakis, D. J.Singh, and T.Siegrist, Coexistence of Weyl physics and planar defects in the semimetals TaP and TaAs, Phys. Rev. B93(24), 245152 (2016)
https://doi.org/10.1103/PhysRevB.93.245152
53 J. O.Willerstrom, Stacking disorder in NbP, TaP, NbAs, and TaAs, J. Less Common Met.99(2), 273 (1984)
https://doi.org/10.1016/0022-5088(84)90225-X
54 C. C.Lee, S. Y.Xu, S. M.Huang, D. S.Sanchez, I.Belopolski, G.Chang, G.Bian, N.Alidoust, H.Zheng, M.Neupane, B.Wang, A.Bansil, M. Z.Hasan, and H.Lin, Fermi surface interconnectivity and topology in Weyl fermion semimetals TaAs, TaP, NbAs, and NbP, Phys. Rev. B92(23), 235104 (2015)
https://doi.org/10.1103/PhysRevB.92.235104
55 Z. K.Liu, L. X.Yang, Y.Sun, T.Zhang, H.Peng, H. F.Yang, C.Chen, Y.Zhang, Y. F.Guo, D.Prabhakaran, M.Schmidt, Z.Hussain, S. K.Mo, C.Felser, B.Yan, and Y. L.Chen, Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family, Nat. Mater.15(1), 27 (2016)
https://doi.org/10.1038/nmat4457
56 C.Xu, J.Chen, G. X.Zhi, Y.Li, J.Dai, and C.Cao, Electronic structures of transition metal dipnictides XPn2 (X= Ta, Nb; Pn= P, As, Sb), Phys. Rev. B93(19), 195106 (2016)
https://doi.org/10.1103/PhysRevB.93.195106
57 Y.Luo, R. D.McDonald, P. F. S.Rosa, B.Scott, N.Wakeham, N. J.Ghimire, E. D.Bauer, J. D.Thompson, and F.Ronning, Anomalous electronic structure and magnetoresistance in TaAs2, Sci. Rep.6(1), 27294 (2016)
https://doi.org/10.1038/srep27294
58 J.Klotz, S. C.Wu, C.Shekhar, Y.Sun, M.Schmidt, M.Nicklas, M.Baenitz, M.Uhlarz, J.Wosnitza, C.Felser, and B.Yan, Quantum oscillations and the Fermi surface topology of the Weyl semimetal NbP, Phys. Rev. B93(12), 121105 (2016)
https://doi.org/10.1103/PhysRevB.93.121105
59 Z.Wang, Y.Zheng, Z.Shen, Y.Lu, H.Fang, F.Sheng, Y.Zhou, X.Yang, Y.Li, C.Feng, and Z.-A.Xu, Helicity-protected ultrahigh mobility Weyl fermions in NbP, Phys. Rev. B93, 121112 (2016)
https://doi.org/10.1103/PhysRevB.93.121112
60 J.Du, H.Wang, Q.Mao, R.Khan, B.Xu, Y.Zhou, Y.Zhang, J.Yang, B.Chen, C.Feng, and M.Fang, Large Unsaturated positive and negative magnetoresistance in Weyl Semimetal TaP, Sci. China Phys. Mech. Astron.59(5), 657406 (2015)
https://doi.org/10.1007/s11433-016-5798-4
61 N. J.Ghimire, Y.Luo, M.Neupane, D. J.Williams, E. D.Bauer, and F.Ronning, Magnetotransport of single crystalline NbAs, J. Phys.: Condens. Matter27(15), 152201 (2015)
https://doi.org/10.1088/0953-8984/27/15/152201
62 Y.Luo, N. J.Ghimire, M.Wartenbe, H.Choi, M.Neupane, R. D.McDonald, E. D.Bauer, J.Zhu, J. D.Thompson, and F.Ronning, Electron-hole compensation effect between topologically trivial electrons and nontrivial holes in NbAs, Phys. Rev. B92, 205134 (2015)
https://doi.org/10.1103/PhysRevB.92.205134
63 X.Yang, Y.Liu, Z.Wang, Y.Zheng, and Z.Xu, Chiral anomaly induced negative magnetoresistance in topological Weyl semimetal NbAs, arXiv: 1506.03190 (2015)
64 C.Zhang, Z.Lin, C.Guo, S. Y.Xu, C. C.Lee, H.Lu, S. M.Huang, G.Chang, C. H.Hsu, H.Lin, L.Li, C.Zhang, T.Neupert, M.Zahid Hasan, J.Wang, and S.Jia, Quantum phase transitions in Weyl semimetal tantalum monophosphide, arXiv: 1507.06301 (2015)
65 C. M.Hurd, in: The Hall Effect in Metals and Alloys, New York: Cambridge University Press, 1972
https://doi.org/10.1007/978-1-4757-0465-5
66 Y. Y.Wang, Q. H.Yu, P. J.Guo, K.Liu, and T. L.Xia, Resistivity plateau and extremely large magnetoresistance in NbAs2 and TaAs2, Phys. Rev. B94(4), 041103 (2016)
https://doi.org/10.1103/PhysRevB.94.041103
67 M. N.Ali, J.Xiong, S.Flynn, J.Tao, Q. D.Gibson, L. M.Schoop, T.Liang, N.Haldolaarachchige, M.Hirschberger, N. P.Ong, and R. J.Cava, Large, nonsaturating magnetoresistance in WTe2, Nature514, 205 (2014)
68 D.Shoenberg, Magnetic Oscillations in Metals, Cambridge University Press, 2009
69 G. P.Mikitik and Yu. V.Sharlai, Manifestation of Berry’s phase in metal physics, Phys. Rev. Lett.82(10), 2147 (1999)
https://doi.org/10.1103/PhysRevLett.82.2147
70 G. P.Mikitik and Yu. V.Sharlai, Berry phase and de Haas-van Alphen effect in LaRhIn5, Phys. Rev. Lett.93(10), 106403 (2004)
https://doi.org/10.1103/PhysRevLett.93.106403
71 G. P.Mikitik and Yu. V.Sharlai, Berry phase and the phase of the Shubnikov-de Haas oscillations in threedimensional topological insulators, Phys. Rev. B85(3), 033301 (2012)
https://doi.org/10.1103/PhysRevB.85.033301
72 H.Murakawa, M. S.Bahramy, M.Tokunaga, Y.Kohama, C.Bell, Y.Kaneko, N.Nagaosa, H. Y.Hwang, and Y.Tokura, Detection of Berry’s phase in a bulk Rashba semiconductor, Science342(6165), 1490 (2013)
https://doi.org/10.1126/science.1242247
73 F.Arnold, M.Naumann, S. C.Wu, Y.Sun, M.Schmidt, H.Borrmann, C.Felser, B.Yan, and E.Hassinger, Chiral Weyl pockets and Fermi surface topology of the Weyl semimetal TaAs, Phys. Rev. Lett.117(14), 146401 (2016)
https://doi.org/10.1103/PhysRevLett.117.146401
74 C. M.Wang, H. Z.Lu, and S. Q.Shen, Anomalous phase shift of quantum oscillations in 3D topological semimetals, Phys. Rev. Lett.117(7), 077201 (2016)
https://doi.org/10.1103/PhysRevLett.117.077201
75 P. J. W.Moll, A. C.Potter, N. L.Nair, B. J.Ramshaw, K. A.Modic, S.Riggs, B.Zeng, N. J.Ghimire, E. D.Bauer, R.Kealhofer, F.Ronning, and J. G.Analytis, Magnetic torque anomaly in the quantum limit of Weyl semimetals, Nat. Commun.7, 12492 (2016)
https://doi.org/10.1038/ncomms12492
76 S. L.Adler, Axial-vector vertex in spinor electrodynamics, Phys. Rev.177(5), 2426 (1969)
https://doi.org/10.1103/PhysRev.177.2426
77 J. S.Bell and R.Jackiw, A PCAC puzzle: π0→γγ in the σ-model, Nuovo Cim., A60(1), 47 (1969)
https://doi.org/10.1007/BF02823296
78 H. B.Nielsen and M.Ninomiya, The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal, Phys. Lett. B130(6), 389 (1983)
https://doi.org/10.1016/0370-2693(83)91529-0
79 X. T.Xu and S.Jia, Recent observations of negative longitudinal magnetoresistance in semimetal, Chin. Phys. B25(11), 117204 (2016)
https://doi.org/10.1088/1674-1056/25/11/117204
80 C. Z.Chen, H.Liu, H.Jiang, and X. C.Xie, Positive magnetoconductivity of Weyl semimetals in the ultraquantum limit, Phys. Rev. B93(16), 165420 (2016)
https://doi.org/10.1103/PhysRevB.93.165420
81 D. T.Son and B. Z.Spivak, Chiral anomaly and classical negative magnetoresistance of Weyl metals, Phys. Rev. B88(10), 104412 (2013)
https://doi.org/10.1103/PhysRevB.88.104412
82 R. D.dos Reis, S. C.Wu, Y.Sun, M. O.Ajeesh, C.Shekhar, M.Schmidt, C.Felser, B.Yan, and M.Nicklas, Pressure tuning the Fermi surface topology of the Weyl semimetal NbP, Phys. Rev. B93(20), 205102 (2016)
https://doi.org/10.1103/PhysRevB.93.205102
83 Y.Luo, N. J.Ghimire, E. D.Bauer, J. D.Thompson, and F.Ronning, “Hard” crystalline lattice in the Weyl semimetal NbAs, J. Phys.: Condens. Matter28(5), 055502 (2016)
https://doi.org/10.1088/0953-8984/28/5/055502
84 Y.Zhou, P.Lu, Y.Du, X.Zhu, G.Zhang, R.Zhang, D.Shao, X.Chen, X.Wang, M.Tian, J.Sun, X.Wan, Z.Yang, W.Yang, Y.Zhang, and D.Xing, Pressureinduced new topological Weyl semimetal phase in TaAs, Phys. Rev. Lett.117(14), 146402 (2016)
https://doi.org/10.1103/PhysRevLett.117.146402
85 H.Wang, H.Wang, Y.Chen, J.Luo, Z.Yuan, J.Liu, Y.Wang, S.Jia, X. J.Liu, J.Wei, and J.Wang, Reply to Comment on Tip induced unconventional superconductivity on Weyl semimetal TaAs, arXiv: 1607.02886 (2016)
86 Y.Li, Y.Zhou, Z.Guo, X.Chen, P.Lu, X.Wang, C.An, Y.Zhou, J.Xing, G.Du, X.Zhu,H.Yang, J.Sun, Z.Yang, Y.Zhang, and H. H.Wen, Superconductivity induced by high pressure in Weyl semimetal TaP, arXiv: 1611.02548 [cond-mat.suprcon] (2016)
87 C. L.Zhang, B.Tong, Z.Yuan, Z.Lin, J.Wang, J.Zhang, C. Y.Xi, Z.Wang, S.Jia, and C.Zhang, Signature of chiral fermion instability in the Weyl semimetal TaAs above the quantum limit, Phys. Rev. B94(20), 205120 (2016)
https://doi.org/10.1103/PhysRevB.94.205120
88 Z.Zhu, X.Lin, J.Liu, B.Fauque, Q.Tao, C.Yang, Y.Shi, and K.Behnia, Quantum oscillations, thermoelectric coefficients, and the Fermi surface of semimetallic WTe2, Phys. Rev. Lett.114(17), 176601 (2015)
https://doi.org/10.1103/PhysRevLett.114.176601
89 T.Liang, Q.Gibson, M. N.Ali, M.Liu, R. J.Cava, and N. P.Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2, Nat. Mater.14(3), 280 (2014)
https://doi.org/10.1038/nmat4143
90 E.Mun, H.Ko, G. J.Miller, G. D.Samolyuk, S. L.Bud’ko, and P. C.Canfield, Magnetic field effects on transport properties of PtSn4, Phys. Rev. B85(3), 035135 (2012)
https://doi.org/10.1103/PhysRevB.85.035135
91 H.Takatsu, J. J.Ishikawa, S.Yonezawa, H.Yoshino, T.Shishidou, T.Oguchi, K.Murata, and Y.Maeno, Extremely large magnetoresistance in the nonmagnetic metal PdCoO2, Phys. Rev. Lett.111(5), 056601 (2013)
https://doi.org/10.1103/PhysRevLett.111.056601
92 P. B.Alers and R. T.Webber, The magnetoresistance of bismuth crystals at low temperatures, Phys. Rev.91(5), 1060 (1953)
https://doi.org/10.1103/PhysRev.91.1060
93 A. A.Abrikosov, Quantum magnetoresistance, Phys. Rev. B58(5), 2788 (1998)
https://doi.org/10.1103/PhysRevB.58.2788
94 A. A.Abrikosov, Quantum linear magnetoresistance, Europhys. Lett.49(6), 789 (2000)
https://doi.org/10.1209/epl/i2000-00220-2
95 M. M.Parish and P. B.Littlewood, Non-saturating magnetoresistance in heavily disordered semiconductors, Nature426(6963), 162 (2003)
https://doi.org/10.1038/nature02073
96 Y.Pan, H.Wang, P.Lu, J.Sun, B.Wang, and D. Y.Xing, The large unsaturated magnetoresistance of Weyl semimetals, arXiv: 1509.03975 [cond-mat.meshall] (2015)
97 Q. D.Jiang, H.Jiang, H.Liu, Q. F.Sun, and X. C.Xie, Chiral wave-packet scattering in Weyl semimetals, Phys. Rev. B93(19), 195165 (2016)
https://doi.org/10.1103/PhysRevB.93.195165
98 P. N.Argyres and E. N.Adams, Longitudinal magnetoresistance in the quantum limit, Phys. Rev. 104, 900 (1956)
https://doi.org/10.1103/PhysRev.104.900
99 H. Z.Lu, S. B.Zhang, and S. Q.Shen, High-field magnetoconductivity of topological semimetals with shortrange potential, Phys. Rev. B92(4), 045203 (2015)
https://doi.org/10.1103/PhysRevB.92.045203
100 S. A.Parameswaran, T.Grover, D. A.Abanin, D. A.Pesin, and A.Vishwanath, Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals, Phys. Rev. X4(3), 031035 (2014)
https://doi.org/10.1103/PhysRevX.4.031035
101 A. C.Potter, I.Kimchi, and A.Vishwanath, Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals, Nat. Commun. 5, 5161 (2014)
https://doi.org/10.1038/ncomms6161
102 P. J. W.Moll, N. L.Nair, T.Helm, A. C.Potter, I.Kimchi, A.Vishwanath, and J. G.Analytis, Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2, Nature535(7611), 266 (2016)
https://doi.org/10.1038/nature18276
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed