Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (2): 134202   https://doi.org/10.1007/s11467-017-0719-1
  本期目录
Slow light effect with high group index and wideband by saddle-like mode in PC-CROW
Yong Wan1, Li-Jun Jiang2, Sheng Xu1, Meng-Xue Li1, Meng-Nan Liu1, Cheng-Yi Jiang1, Feng Yuan1()
1. College of Physics Science, Qingdao University, Qingdao 266071, China
2. Qingdao No. 2 Middle School of Shandong Province, Qingdao 266071, China
 全文: PDF(1413 KB)  
Abstract

Slow light with high group index and wideband is achieved in photonic crystal coupled-resonator optical waveguides (PC-CROWs). According to the eye-shaped scatterers and various microcavities, saddlelike curves between the normalized frequency f and wave number k can be obtained by adjusting the parameters of the scatterers, parameters of the coupling microcavities, and positions of the scatterers. Slow light with decent flat band and group index can then be achieved by optimizing the parameters. Simulations prove that the maximal value of the group index is>104, and the normalized delay bandwidth product within a new varying range of ng>102 or ng>103 can be a new and effective criterion of evaluation for the slow light in PC-CROWs.

Key wordseye-shaped scatterer    slow light    photonic crystal    coupled-resonator optical waveguide
收稿日期: 2017-04-04      出版日期: 2017-12-08
Corresponding Author(s): Feng Yuan   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(2): 134202.
Yong Wan, Li-Jun Jiang, Sheng Xu, Meng-Xue Li, Meng-Nan Liu, Cheng-Yi Jiang, Feng Yuan. Slow light effect with high group index and wideband by saddle-like mode in PC-CROW. Front. Phys. , 2018, 13(2): 134202.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0719-1
https://academic.hep.com.cn/fop/CN/Y2018/V13/I2/134202
1 R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, Slowlight optical buffers: Capabilities and fundamental limitations, J. Lightwave Technol. 23(12), 4046 (2005)
https://doi.org/10.1109/JLT.2005.853125
2 S. K. Tripathy, S. Sahu, C. Mohapatro, and S. P. Dash, Implementation of optical logic gates using closed packed 2D-photonic crystal structure, Opt. Commun. 285(13–14), 3234 (2012)
https://doi.org/10.1016/j.optcom.2012.02.082
3 K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi, Ultralow-energy and highcontrast all-optical switch involving Fano resonance based on coupled photonic crystal nanomicrocavities, Opt. Express 21(10), 11877 (2013)
https://doi.org/10.1364/OE.21.011877
4 Y. Wan, S. Ge, Y. Guo, and M. Yun, Application of 2D graded eye-shape scatterers for slow light effect in photonic crystal line-defect waveguide, Optik (Stuttg.) 125(5), 1605 (2014)
https://doi.org/10.1016/j.ijleo.2013.10.015
5 J. Chen, G. von Freymann, S. Choi, and G. Ozin, Amplified photochemistry with slow photons, Adv. Mater. 18(14), 1915 (2006)
https://doi.org/10.1002/adma.200600588
6 Z. Cai, Z. Xiong, X. Lu, and J. Teng, In situ gold-loaded titania photonic crystals with enhanced photocatalytic activity, J. Mater. Chem. A 2(2), 545 (2014)
https://doi.org/10.1039/C3TA13878J
7 T. Baba, Slow light in photonic crystals, Nat. Photon. 2, 465 (2008)
https://doi.org/10.1038/nphoton.2008.146
8 A. C. Liapis, Optimizing photonic crystal waveguides for on-chip spectroscopic applications, Opt. Express 21(8), 10160 (2013)
https://doi.org/10.1364/OE.21.010160
9 S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, Dispersion engineered slow light in photonic crystal: A comparison, J. Opt. 12(10), 104004 (2010)
https://doi.org/10.1088/2040-8978/12/10/104004
10 A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Coupledresonator optical waveguide: A proposal and analysis, Opt. Lett. 24(11), 711 (1999)
https://doi.org/10.1364/OL.24.000711
11 K. Sakai, E. Miyai, and S. Noda, Two-dimensional coupled wave theory for square-lattice photonic-crystal lasers with TM-polarization, Opt. Express 15(7), 3981 (2007)
https://doi.org/10.1364/OE.15.003981
12 E. Waks and J. Vuckovic, Coupled mode theory for photonic crystal cavity-waveguide interaction, Opt. Express 13(13), 5064 (2005)
https://doi.org/10.1364/OPEX.13.005064
13 H. Tian, F. Long, W. Liu, and Y. Ji, Tunable slow light and buffer capability in photonic crystal coupledmicrocavity waveguides based on electro-optic effect, Opt. Commun. 285(10–11), 2760 (2012)
https://doi.org/10.1016/j.optcom.2012.01.086
14 K. Tian, W. Arora, S. Takahashi, J. Hong, and G. Barbastathis, Dynamic group velocity control in a mechanically tunable photonic-crystal coupled-resonator optical waveguide, Phys. Rev. B 80(13), 134305 (2009)
https://doi.org/10.1103/PhysRevB.80.134305
15 K. Üstün and H. Kurt, Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides, Opt. Express 18(20), 21155 (2010)
https://doi.org/10.1364/OE.18.021155
16 N. Matsuda, E. Kuramochi, H. Takesue, and M. Notomi, Dispersion and light transport characteristics of large-scale photonic-crystal coupled nanomicrocavity arrays, Opt. Lett. 39(8), 2290 (2014)
https://doi.org/10.1364/OL.39.002290
17 H. Kurt, M. Turduev, and I. H. Giden, Crescent shaped dielectric periodic structure for light manipulation, Opt. Express 20(7), 7184 (2012)
https://doi.org/10.1364/OE.20.007184
18 Y. Wan, Z. Cai, Q. Li, and X. S. Zhao, Simulation and fabrication of THz waveguides with silicon wafer by using eye-shaped pillars as building blocks, Appl. Phys. A 102(2), 373 (2011)
https://doi.org/10.1007/s00339-010-6012-6
19 Y. Wan, K. Fu, C. H. Li, and M. J. Yun, Improving slow light effect in photonic crystal line-defect waveguide by using eye-shaped scatterers, Opt. Commun. 286, 192 (2013)
https://doi.org/10.1016/j.optcom.2012.09.025
20 C. Li, R. Su, Y. Wang, and X. Zhang, Theoretical study of ultra-wideband slow light in dual-stub-coupled plasmonic waveguide, Opt. Commun. 377, 10 (2016)
https://doi.org/10.1016/j.optcom.2016.05.034
21 N. Zhu, Y. Y. Li, C. C. Chen, and S. Yan, Slow light in dual-periodic photonic crystals based slotted-waveguide coupled cavity, Opt. Laser Technol. 83, 125 (2016)
https://doi.org/10.1016/j.optlastec.2016.03.025
22 Y. Wan, X. Ge, S. Xu, Y. Guo, and F. Yuan, Ultra-slow light effects in symmetric and asymmetric waveguide structures with moon-like scatterers, Front. Phys. 12(1), 124204 (2017)
https://doi.org/10.1007/s11467-016-0598-x
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed