Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (2): 130307   https://doi.org/10.1007/s11467-017-0732-4
  本期目录
Stationary and moving solitons in spin–orbit-coupled spin-1 Bose–Einstein condensates
Yu-E Li, Ju-Kui Xue()
Key Laboratory of Atomic Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
 全文: PDF(481 KB)  
Abstract

We investigate the matter-wave solitons in a spin–orbit-coupled spin-1 Bose–Einstein condensate using a multiscale perturbation method. Beginning with the one-dimensional spin–orbit-coupled threecomponent Gross–Pitaevskii equations, we derive a single nonlinear Schrödinger equation, which allows determination of the analytical soliton solutions of the system. Stationary and moving solitons in the system are derived. In particular, a parameter space for different existing soliton types is provided. It is shown that there exist only dark or bright solitons when the spin–orbit coupling is weak, with the solitons depending on the atomic interactions. However, when the spin–orbit coupling is strong, both dark and bright solitons exist, being determined by the Raman coupling. Our analytical solutions are confirmed by direct numerical simulations.

Key wordsspin–orbit coupling    Bose–Einstein condensate    soliton    perturbation method
收稿日期: 2017-06-10      出版日期: 2017-12-08
Corresponding Author(s): Ju-Kui Xue   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(2): 130307.
Yu-E Li, Ju-Kui Xue. Stationary and moving solitons in spin–orbit-coupled spin-1 Bose–Einstein condensates. Front. Phys. , 2018, 13(2): 130307.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0732-4
https://academic.hep.com.cn/fop/CN/Y2018/V13/I2/130307
1 M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, Vortices in a Bose–Einstein condensate, Phys. Rev. Lett. 83(13), 2498 (1999)
https://doi.org/10.1103/PhysRevLett.83.2498
2 J. Billy, V. Josse, A. Bernard, B. Hambrecht, P. Lugan, D. Clement, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, Direct observation of Anderson localization of matter waves in a controlled disorder, Nature 453(7197), 891 (2008)
https://doi.org/10.1038/nature07000
3 G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Anderson localization of a non-interacting Bose– Einstein condensate, Nature 453(7197), 895 (2008)
https://doi.org/10.1038/nature07071
4 S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, Dark solitons in Bose–Einstein condensates, Phys. Rev. Lett. 83(25), 5198 (1999)
https://doi.org/10.1103/PhysRevLett.83.5198
5 U. Al Khawaja, H. T. C. Stoof, R. G. Hulet, K. E. Strecker, and G. B. Partridge, Bright soliton trains of trapped Bose–Einstein condensates, Phys. Rev. Lett. 89(20), 200404 (2002)
https://doi.org/10.1103/PhysRevLett.89.200404
6 G. Theocharis, D. J. Frantzeskakis, P. G. Kevrekidis, B. A. Malomed, and Y. S. Kivshar, Ring dark solitons and vortex necklaces in Bose–Einstein condensates, Phys. Rev. Lett. 90(12), 120403 (2003)
https://doi.org/10.1103/PhysRevLett.90.120403
7 B. Wu, J. Liu, and Q. Niu, Controlled generation of dark solitons with phase imprinting, Phys. Rev. Lett. 88(3), 034101 (2002)
https://doi.org/10.1103/PhysRevLett.88.034101
8 Y. Wu and L. Deng, Ultraslow optical solitons in a cold four-state medium, Phys. Rev. Lett. 93(14), 143904 (2004)
https://doi.org/10.1103/PhysRevLett.93.143904
9 J. K. Xue, Interaction of ring dark solitons with ring impurities in Bose–Einstein condensates, J. Phys. At. Mol. Opt. Phys. 38(6), 671 (2005)
https://doi.org/10.1088/0953-4075/38/6/006
10 T. Taniuti and K. Nishihara, Nonlinear Waves, Pitman Advanced Publishing Program, 1983
11 A. C. Newell, Solitons in Mathematics and Physics, Society for Industrial and Applied Mathematics, 1987
12 S. Stellmer, C. Becker, P. Soltan-Panahi, E.M. Richter, S. Dörscher, M. Baumert, J. Kronjäger, K. Bongs, and K. Sengstock, Collisions of dark solitons in elongated Bose–Einstein condensates, Phys. Rev. Lett. 101(12), 120406 (2008)
https://doi.org/10.1103/PhysRevLett.101.120406
13 H. G. Luo and W. M. Liu, Matter-wave solitons in heteronuclear atomic Bose–Einstein condensates with synchronously controllable interactions and potentials, Phys. Rev. A 84(5), 053631 (2011)
https://doi.org/10.1103/PhysRevA.84.053631
14 T. Busch and J. R. Anglin, Dark-bright solitons in inhomogeneous Bose–Einstein condensates, Phys. Rev. Lett. 87(1), 010401 (2001)
https://doi.org/10.1103/PhysRevLett.87.010401
15 C. Hamner, J. J. Chang, P. Engels, and M. A. Hoefer, Generation of dark-bright soliton trains in superfluid– superfluid counterflow, Phys. Rev. Lett. 106(6), 065302 (2011)
https://doi.org/10.1103/PhysRevLett.106.065302
16 K. Kasamatsu and M. Tsubota, Multiple domain formation induced by modulation instability in twocomponent Bose–Einstein condensates, Phys. Rev. Lett. 93(10), 100402 (2004)
https://doi.org/10.1103/PhysRevLett.93.100402
17 P. G. Kevrekidis, D. J. Frantzeskakis, B. A. Malomed, and R. Carretero-González, Families of matter-waves in two-component Bose–Einstein condensates, Eur. Phys. J. D 28(2), 181 (2004)
https://doi.org/10.1140/epjd/e2003-00311-6
18 T. W. Neely, E. C. Samson, A. S. Bradley, M. J. Davis, and B. P. Anderson, Observation of vortex dipoles in an oblate Bose–Einstein condensate, Phys. Rev. Lett. 104(16), 160401 (2010)
https://doi.org/10.1103/PhysRevLett.104.160401
19 D. V. Freilich, D. M. Bianchi, A. M. Kaufman, T. K. Langin, and D. S. Hall, Real-time dynamics of single vortex lines and vortex dipoles in a Bose–Einstein condensate, Science 329(5996), 1182 (2010)
https://doi.org/10.1126/science.1191224
20 S. Middelkamp, P. J. Torres, P. G. Kevrekidis, D. J. Frantzeskakis, R. Carretero-González, P. Schmelcher, D. V. Freilich, and D. S. Hall, Guiding-center dynamics of vortex dipoles in Bose–Einstein condensates, Phys. Rev. A 84(1), 011605(R) (2011)
21 S. Wüster, T. E. Argue, and C. M. Savage, Numerical study of the stability of skyrmions in Bose–Einstein condensates, Phys. Rev. A 72(4), 043616 (2005)
https://doi.org/10.1103/PhysRevA.72.043616
22 T. Kawakami, T. Mizushima, M. Nitta, and K. Machida, Stable skyrmions in SU(2) gauged Bose– Einstein condensates, Phys. Rev. Lett. 109(1), 015301 (2012)
https://doi.org/10.1103/PhysRevLett.109.015301
23 Y. J. Lin, K. Jimenez-Garcia, and I. B. Spielman, Spin–orbit-coupled Bose–Einstein condensates, Nature 471(7336), 83 (2011)
https://doi.org/10.1038/nature09887
24 V. Galitski and I. B. Spielman, Spin–orbit coupling in quantum gases, Nature 494(7435), 49 (2013)
https://doi.org/10.1038/nature11841
25 X. O. Xu and J. H. Han, Emergence of chiral magnetism in spinor Bose–Einstein condensates with Rashba coupling, Phys. Rev. Lett. 108(18), 185301 (2012)
https://doi.org/10.1103/PhysRevLett.108.185301
26 J. Radić, T. A. Sedrakyan, I. B. Spielman, and V. Galitski, Vortices in spin–orbit-coupled Bose–Einstein condensates, Phys. Rev. A 84(6), 063604 (2011)
https://doi.org/10.1103/PhysRevA.84.063604
27 X. F. Zhou, J. Zhou, and C. J. Wu, Vortex structures of rotating spin–orbit-coupled Bose–Einstein condensates, Phys. Rev. A 84(6), 063624 (2011)
https://doi.org/10.1103/PhysRevA.84.063624
28 C. Wang, C. Gao, C. M. Jian, and H. Zhai, Spin–orbit coupled spinor Bose–Einstein condensates, Phys. Rev. Lett. 105(16), 160403 (2010)
https://doi.org/10.1103/PhysRevLett.105.160403
29 T. L. Ho and S. Zhang, Bose–Einstein condensates with spin–orbit interaction, Phys. Rev. Lett. 107(15), 150403 (2011)
https://doi.org/10.1103/PhysRevLett.107.150403
30 T. Congy, A. M. Kamchatnov, and N. Pavloff, Nonlinear waves in coherently coupled Bose–Einstein condensates, Phys. Rev. A 93(4), 043613 (2016)
https://doi.org/10.1103/PhysRevA.93.043613
31 L. Salasnich and B. A. Malomed, Localized modes in dense repulsive and attractive Bose–Einstein condensates with spin–orbit and Rabi couplings, Phys. Rev. A 87(6), 063625 (2013)
https://doi.org/10.1103/PhysRevA.87.063625
32 V. Achilleos, D. J. Frantzeskakis, P. G. Kevrekidis, and D. E. Pelinovsky, Matter-wave bright solitons in spin– orbit coupled Bose–Einstein condensates, Phys. Rev. Lett. 110(26), 264101 (2013)
https://doi.org/10.1103/PhysRevLett.110.264101
33 V. Achilleos, D. J. Frantzeskakis, P. G. Kevrekidis, P. Schmelcher, and J. Stockhofe, Positive and negative mass solitons in spin–orbit coupled Bose–Einstein condensates, Rom. Rep. Phys. 67(1), 235 (2015)
34 Y. V. Kartashov, V. V. Konotop, and F. Kh. Abdullaev, Gap solitons in a spin–orbit-coupled Bose–Einstein condensate, Phys. Rev. Lett. 111(6), 060402 (2013)
https://doi.org/10.1103/PhysRevLett.111.060402
35 G. X. Huang, V. A. Makarov, and M. G. Velarde, Twodimensional solitons in Bose–Einstein condensates with a disk-shaped trap, Phys. Rev. A 67(2), 023604 (2003)
https://doi.org/10.1103/PhysRevA.67.023604
36 S. Sinha, R. Nath, and L. Santos, Trapped twodimensional condensates with synthetic spin–orbit coupling, Phys. Rev. Lett. 107(27), 270401 (2011)
https://doi.org/10.1103/PhysRevLett.107.270401
37 H. Sakaguchi, B. Li, and B. A. Malomed, Creation of two-dimensional composite solitons in spin–orbitcoupled self-attractive Bose–Einstein condensates in free space, Phys. Rev. E 89(3), 032920 (2014)
https://doi.org/10.1103/PhysRevE.89.032920
38 V. E. Lobanov, Y. V. Kartashov, and V. V. Konotop, Fundamental, multipole, and half-vortex gap solitons in spin–orbit coupled Bose–Einstein condensates, Phys. Rev. Lett. 112(18), 180403 (2014)
https://doi.org/10.1103/PhysRevLett.112.180403
39 Y. C. Zhang, Z. W. Zhou, B. A. Malomed, and H. Pu, Stable solitons in three dimensional free space without the ground state: Self-trapped Bose–Einstein condensates with spin–orbit coupling, Phys. Rev. Lett. 115(25), 253902 (2015)
https://doi.org/10.1103/PhysRevLett.115.253902
40 D. L. Campbell, R. M. Price, A. Putra, A. Valdés-Curiel, D. Trypogeorgos, and I. B. Spielman, Magnetic phases of spin-1 spin–orbit-coupled Bose gases, Nat. Commun. 7, 10897 (2016)
https://doi.org/10.1038/ncomms10897
41 L. Chen, H. Pu, and Y. Zhang, Spin–orbit angular momentum coupling in a spin-1 Bose–Einstein condensate, Phys. Rev. A 93(1), 013629 (2016)
https://doi.org/10.1103/PhysRevA.93.013629
42 S. Gautam and S. K. Adhikari, Phase separation in a spin–orbit-coupled Bose–Einstein condensate, Phys. Rev. A 90(4), 043619 (2014)
https://doi.org/10.1103/PhysRevA.90.043619
43 G. I. Martone, F. V. Pepe, P. Facchi, S. Pascazio, and S. Stringari, Tricriticalities and quantum phases in spin–orbit-coupled spin-1 Bose gases, Phys. Rev. Lett. 117(12), 125301 (2016)
https://doi.org/10.1103/PhysRevLett.117.125301
44 Y. K. Liu and S. J. Yang, Exact solitons and manifold mixing dynamics in the spin–orbit coupled spinor condensates, Europhys. Lett. 108(3), 30004 (2014)
https://doi.org/10.1209/0295-5075/108/30004
45 S. Gautam and S. K. Adhikari, Mobile vector soliton in a spin–orbit coupled spin-1 condensate, Laser Phys. Lett. 12(4), 045501 (2015)
https://doi.org/10.1088/1612-2011/12/4/045501
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed