Stationary and moving solitons in spin–orbit-coupled spin-1 Bose–Einstein condensates
Yu-E Li, Ju-Kui Xue()
Key Laboratory of Atomic Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
We investigate the matter-wave solitons in a spin–orbit-coupled spin-1 Bose–Einstein condensate using a multiscale perturbation method. Beginning with the one-dimensional spin–orbit-coupled threecomponent Gross–Pitaevskii equations, we derive a single nonlinear Schrödinger equation, which allows determination of the analytical soliton solutions of the system. Stationary and moving solitons in the system are derived. In particular, a parameter space for different existing soliton types is provided. It is shown that there exist only dark or bright solitons when the spin–orbit coupling is weak, with the solitons depending on the atomic interactions. However, when the spin–orbit coupling is strong, both dark and bright solitons exist, being determined by the Raman coupling. Our analytical solutions are confirmed by direct numerical simulations.
M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, Vortices in a Bose–Einstein condensate, Phys. Rev. Lett. 83(13), 2498 (1999) https://doi.org/10.1103/PhysRevLett.83.2498
2
J. Billy, V. Josse, A. Bernard, B. Hambrecht, P. Lugan, D. Clement, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, Direct observation of Anderson localization of matter waves in a controlled disorder, Nature 453(7197), 891 (2008) https://doi.org/10.1038/nature07000
3
G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Anderson localization of a non-interacting Bose– Einstein condensate, Nature 453(7197), 895 (2008) https://doi.org/10.1038/nature07071
4
S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, Dark solitons in Bose–Einstein condensates, Phys. Rev. Lett. 83(25), 5198 (1999) https://doi.org/10.1103/PhysRevLett.83.5198
5
U. Al Khawaja, H. T. C. Stoof, R. G. Hulet, K. E. Strecker, and G. B. Partridge, Bright soliton trains of trapped Bose–Einstein condensates, Phys. Rev. Lett. 89(20), 200404 (2002) https://doi.org/10.1103/PhysRevLett.89.200404
6
G. Theocharis, D. J. Frantzeskakis, P. G. Kevrekidis, B. A. Malomed, and Y. S. Kivshar, Ring dark solitons and vortex necklaces in Bose–Einstein condensates, Phys. Rev. Lett. 90(12), 120403 (2003) https://doi.org/10.1103/PhysRevLett.90.120403
J. K. Xue, Interaction of ring dark solitons with ring impurities in Bose–Einstein condensates, J. Phys. At. Mol. Opt. Phys. 38(6), 671 (2005) https://doi.org/10.1088/0953-4075/38/6/006
10
T. Taniuti and K. Nishihara, Nonlinear Waves, Pitman Advanced Publishing Program, 1983
11
A. C. Newell, Solitons in Mathematics and Physics, Society for Industrial and Applied Mathematics, 1987
12
S. Stellmer, C. Becker, P. Soltan-Panahi, E.M. Richter, S. Dörscher, M. Baumert, J. Kronjäger, K. Bongs, and K. Sengstock, Collisions of dark solitons in elongated Bose–Einstein condensates, Phys. Rev. Lett. 101(12), 120406 (2008) https://doi.org/10.1103/PhysRevLett.101.120406
13
H. G. Luo and W. M. Liu, Matter-wave solitons in heteronuclear atomic Bose–Einstein condensates with synchronously controllable interactions and potentials, Phys. Rev. A 84(5), 053631 (2011) https://doi.org/10.1103/PhysRevA.84.053631
C. Hamner, J. J. Chang, P. Engels, and M. A. Hoefer, Generation of dark-bright soliton trains in superfluid– superfluid counterflow, Phys. Rev. Lett. 106(6), 065302 (2011) https://doi.org/10.1103/PhysRevLett.106.065302
16
K. Kasamatsu and M. Tsubota, Multiple domain formation induced by modulation instability in twocomponent Bose–Einstein condensates, Phys. Rev. Lett. 93(10), 100402 (2004) https://doi.org/10.1103/PhysRevLett.93.100402
17
P. G. Kevrekidis, D. J. Frantzeskakis, B. A. Malomed, and R. Carretero-González, Families of matter-waves in two-component Bose–Einstein condensates, Eur. Phys. J. D 28(2), 181 (2004) https://doi.org/10.1140/epjd/e2003-00311-6
18
T. W. Neely, E. C. Samson, A. S. Bradley, M. J. Davis, and B. P. Anderson, Observation of vortex dipoles in an oblate Bose–Einstein condensate, Phys. Rev. Lett. 104(16), 160401 (2010) https://doi.org/10.1103/PhysRevLett.104.160401
19
D. V. Freilich, D. M. Bianchi, A. M. Kaufman, T. K. Langin, and D. S. Hall, Real-time dynamics of single vortex lines and vortex dipoles in a Bose–Einstein condensate, Science 329(5996), 1182 (2010) https://doi.org/10.1126/science.1191224
20
S. Middelkamp, P. J. Torres, P. G. Kevrekidis, D. J. Frantzeskakis, R. Carretero-González, P. Schmelcher, D. V. Freilich, and D. S. Hall, Guiding-center dynamics of vortex dipoles in Bose–Einstein condensates, Phys. Rev. A 84(1), 011605(R) (2011)
21
S. Wüster, T. E. Argue, and C. M. Savage, Numerical study of the stability of skyrmions in Bose–Einstein condensates, Phys. Rev. A 72(4), 043616 (2005) https://doi.org/10.1103/PhysRevA.72.043616
22
T. Kawakami, T. Mizushima, M. Nitta, and K. Machida, Stable skyrmions in SU(2) gauged Bose– Einstein condensates, Phys. Rev. Lett. 109(1), 015301 (2012) https://doi.org/10.1103/PhysRevLett.109.015301
23
Y. J. Lin, K. Jimenez-Garcia, and I. B. Spielman, Spin–orbit-coupled Bose–Einstein condensates, Nature 471(7336), 83 (2011) https://doi.org/10.1038/nature09887
X. O. Xu and J. H. Han, Emergence of chiral magnetism in spinor Bose–Einstein condensates with Rashba coupling, Phys. Rev. Lett. 108(18), 185301 (2012) https://doi.org/10.1103/PhysRevLett.108.185301
26
J. Radić, T. A. Sedrakyan, I. B. Spielman, and V. Galitski, Vortices in spin–orbit-coupled Bose–Einstein condensates, Phys. Rev. A 84(6), 063604 (2011) https://doi.org/10.1103/PhysRevA.84.063604
27
X. F. Zhou, J. Zhou, and C. J. Wu, Vortex structures of rotating spin–orbit-coupled Bose–Einstein condensates, Phys. Rev. A 84(6), 063624 (2011) https://doi.org/10.1103/PhysRevA.84.063624
T. Congy, A. M. Kamchatnov, and N. Pavloff, Nonlinear waves in coherently coupled Bose–Einstein condensates, Phys. Rev. A 93(4), 043613 (2016) https://doi.org/10.1103/PhysRevA.93.043613
31
L. Salasnich and B. A. Malomed, Localized modes in dense repulsive and attractive Bose–Einstein condensates with spin–orbit and Rabi couplings, Phys. Rev. A 87(6), 063625 (2013) https://doi.org/10.1103/PhysRevA.87.063625
32
V. Achilleos, D. J. Frantzeskakis, P. G. Kevrekidis, and D. E. Pelinovsky, Matter-wave bright solitons in spin– orbit coupled Bose–Einstein condensates, Phys. Rev. Lett. 110(26), 264101 (2013) https://doi.org/10.1103/PhysRevLett.110.264101
33
V. Achilleos, D. J. Frantzeskakis, P. G. Kevrekidis, P. Schmelcher, and J. Stockhofe, Positive and negative mass solitons in spin–orbit coupled Bose–Einstein condensates, Rom. Rep. Phys. 67(1), 235 (2015)
34
Y. V. Kartashov, V. V. Konotop, and F. Kh. Abdullaev, Gap solitons in a spin–orbit-coupled Bose–Einstein condensate, Phys. Rev. Lett. 111(6), 060402 (2013) https://doi.org/10.1103/PhysRevLett.111.060402
35
G. X. Huang, V. A. Makarov, and M. G. Velarde, Twodimensional solitons in Bose–Einstein condensates with a disk-shaped trap, Phys. Rev. A 67(2), 023604 (2003) https://doi.org/10.1103/PhysRevA.67.023604
36
S. Sinha, R. Nath, and L. Santos, Trapped twodimensional condensates with synthetic spin–orbit coupling, Phys. Rev. Lett. 107(27), 270401 (2011) https://doi.org/10.1103/PhysRevLett.107.270401
37
H. Sakaguchi, B. Li, and B. A. Malomed, Creation of two-dimensional composite solitons in spin–orbitcoupled self-attractive Bose–Einstein condensates in free space, Phys. Rev. E 89(3), 032920 (2014) https://doi.org/10.1103/PhysRevE.89.032920
38
V. E. Lobanov, Y. V. Kartashov, and V. V. Konotop, Fundamental, multipole, and half-vortex gap solitons in spin–orbit coupled Bose–Einstein condensates, Phys. Rev. Lett. 112(18), 180403 (2014) https://doi.org/10.1103/PhysRevLett.112.180403
39
Y. C. Zhang, Z. W. Zhou, B. A. Malomed, and H. Pu, Stable solitons in three dimensional free space without the ground state: Self-trapped Bose–Einstein condensates with spin–orbit coupling, Phys. Rev. Lett. 115(25), 253902 (2015) https://doi.org/10.1103/PhysRevLett.115.253902
40
D. L. Campbell, R. M. Price, A. Putra, A. Valdés-Curiel, D. Trypogeorgos, and I. B. Spielman, Magnetic phases of spin-1 spin–orbit-coupled Bose gases, Nat. Commun. 7, 10897 (2016) https://doi.org/10.1038/ncomms10897
41
L. Chen, H. Pu, and Y. Zhang, Spin–orbit angular momentum coupling in a spin-1 Bose–Einstein condensate, Phys. Rev. A 93(1), 013629 (2016) https://doi.org/10.1103/PhysRevA.93.013629
42
S. Gautam and S. K. Adhikari, Phase separation in a spin–orbit-coupled Bose–Einstein condensate, Phys. Rev. A 90(4), 043619 (2014) https://doi.org/10.1103/PhysRevA.90.043619
43
G. I. Martone, F. V. Pepe, P. Facchi, S. Pascazio, and S. Stringari, Tricriticalities and quantum phases in spin–orbit-coupled spin-1 Bose gases, Phys. Rev. Lett. 117(12), 125301 (2016) https://doi.org/10.1103/PhysRevLett.117.125301
44
Y. K. Liu and S. J. Yang, Exact solitons and manifold mixing dynamics in the spin–orbit coupled spinor condensates, Europhys. Lett. 108(3), 30004 (2014) https://doi.org/10.1209/0295-5075/108/30004