Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation
Xue-Rong Hu, Ji-Ming Zheng(), Zhao-Yu Ren()
Institute of Photonics & Photo-technology, National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base), National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Northwest University, Xi’an 710069, China
Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the heterostructure, and charges transfer from graphene to phosphorene, causing the Fermi level of the heterostructure to shift downward with respect to the Dirac point of graphene. Significantly, strong coupling between two layers is discovered in the band spectrum even though it has a van der Waals heterostructure. A tight-binding Hamiltonian model is used to reveal that the resonance of the Bloch states between the phosphorene and graphene layers in certain K points combines with the symmetry matching between band states, which explains the reason for the strong coupling in such heterostructures. This work may enhance the understanding of interlayer interaction and composition mechanisms in van der Waals heterostructures consisting of two-dimensional layered nanomaterials, and may indicate potential reference information for nanoelectronic and optoelectronic applications.
C. J. Shih, Q. H. Wang, Y. Son, Z. Jin, D. Blankschtein, and M. S. Strano, Tuning on-off current ratio and fieldeffect mobility in a MoS2-graphene heterostructure via Schottky barrier modulation, ACS Nano 8(6), 5790 (2014) https://doi.org/10.1021/nn500676t
2
Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode, ACS Nano 8(8), 8292 (2014) https://doi.org/10.1021/nn5027388
3
J. Lu, J. Yang, A. Carvalho, H. Liu, Y. Lu, and C. H. Sow, Light–matter interactions in phosphorene, Acc. Chem. Res. 49(9), 1806 (2016) https://doi.org/10.1021/acs.accounts.6b00266
4
J. Lu, A. Carvalho, J. Wu, H. Liu, E. S. Tok, A. H. C. Neto, B. Özyilmaz, and C. H. Sow, Enhanced photoresponse from phosphorene–phosphorene-suboxide junction fashioned by focused laser micromachining, Adv. Mater. 28, 4090 (2016) https://doi.org/10.1002/adma.201506201
5
M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer, and T. Mueller, Photovoltaic effect in an electrically tunable van der Waals heterojunction, Nano Lett. 14(8), 4785 (2014) https://doi.org/10.1021/nl501962c
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012) https://doi.org/10.1038/nnano.2012.193
8
L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014) https://doi.org/10.1038/nnano.2014.35
9
F. Xia, H. Wang, and Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics, Nat. Commun. 5, 289 (2014) https://doi.org/10.1038/ncomms5458
10
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014) https://doi.org/10.1021/nn501226z
11
M. Buscema, D. J. Groenendijk, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating, Nat. Commun. 5, 4651 (2014) https://doi.org/10.1038/ncomms5651
12
V. Tran, R. Soklaski, Y. Liang, and L. Yang, Layercontrolled band gap and anisotropic excitons in fewlayer black phosphorus, Phys. Rev. B 89(23), 235319 (2014) https://doi.org/10.1103/PhysRevB.89.235319
13
A. S. Rodin, A. Carvalho, and A. H. Castro Neto, Strain-induced gap modification in black phosphorus, Phys. Rev. Lett. 112(17), 176801 (2014) https://doi.org/10.1103/PhysRevLett.112.176801
R. Ganatra and Q. Zhang, Few-layer MoS2: A promising layered semiconductor, ACS Nano 8(5), 4074 (2014) https://doi.org/10.1021/nn405938z
16
J. O. Island, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Environmental instability of fewlayer black phosphorus, 2D Materials 2 (1), 011002 (2015)
J. E. Padilha, A. Fazzio, and A. J. da Silva, Van der Waals heterostructure of phosphorene and graphene: Tuning the Schottky barrier and doping by electrostatic gating, Phys. Rev. Lett. 114(6), 066803 (2015) https://doi.org/10.1103/PhysRevLett.114.066803
19
T. Hu and J. Hong, Anisotropic effective mass, optical property, and enhanced band gap in BN/phosphorene/BN heterostructures, ACS Appl. Mater. Interfaces 7(42), 23489 (2015) https://doi.org/10.1021/acsami.5b05694
20
J. Lu, A. Carvalho, W. Jing, H. Liu, E. S. Tok, A. H. C. Neto, B. Özyilmaz, and C. H. Sow, Phosphorene: Enhanced photoresponse from phosphorene-phosphorenesuboxide junction fashioned by focused laser micromachining, Adv. Mater. 28(21), 4164 (2016) https://doi.org/10.1002/adma.201670146
21
Y. Zhao, H. Wang, H. Huang, Q. Xiao, Y. Xu, Z. Guo, H. Xie, J. Shao, Z. Sun, and W. Han, Surface coordination of black phosphorus for robust air and water stability, Angew. Chem. Int. Ed. 55(16), 5003 (2016) https://doi.org/10.1002/anie.201512038
22
G. C. Guo, D. Wang, X. L. Wei, Q. Zhang, H. Liu, W. M. Lau, and L. M. Liu, First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries, J. Phys. Chem. Lett. 6(24), 5002 (2015) https://doi.org/10.1021/acs.jpclett.5b02513
23
J. Dai and X. C. Zeng, Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells, J. Phys. Chem. Lett. 5(7), 1289 (2014) https://doi.org/10.1021/jz500409m
24
L. Huang and J. Li, Tunable electronic structure of black phosphorus/blue phosphorus van der Waals p-n heterostructure, Appl. Phys. Lett. 108(8), 083101 (2016) https://doi.org/10.1063/1.4942368
25
H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides, Proc. Natl. Acad. Sci. USA 111(17), 6198 (2014) https://doi.org/10.1073/pnas.1405435111
26
G. Kresse and J. Furthmüller, Efficiency of ab-initiototal energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996) https://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999) https://doi.org/10.1103/PhysRevB.59.1758
J. Klimeš, D. R. Bowler, and A. Michaelides, Van der Waals density functionals applied to solids, Phys. Rev. B 83(19), 195131 (2011) https://doi.org/10.1103/PhysRevB.83.195131
31
Y. Cai, G. Zhang, and Y. W. Zhang, Electronic properties of phosphorene/graphene and phosphorene/ hexagonal boron nitride heterostructures, J. Phys. Chem. C 119(24), 13929 (2015) https://doi.org/10.1021/acs.jpcc.5b02634
32
B. Sa, Y. L. Li, J. Qi, R. Ahuja, and Z. Sun, Strain engineering for phosphorene: The potential application as a photocatalyst, J. Phys. Chem. C 118(46), 26560 (2014) https://doi.org/10.1021/jp508618t
33
R. Fei and L. Yang, Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus, Nano Lett. 14(5), 2884 (2014) https://doi.org/10.1021/nl500935z