Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (2): 136501   https://doi.org/10.1007/s11467-017-0743-1
  本期目录
Structural, optical, and thermal properties of MAX-phase Cr2AlB2
Xiao-Hong Li1,2,3(), Hong-Ling Cui1, Rui-Zhou Zhang1
1. College of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
2. Department of Chemistry, Nanjing University of Science and Technology, Nanjing 210094, China
3. Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Luoyang 471023, China
 全文: PDF(2206 KB)  
Abstract

First-principles calculations of the structural, optical, and thermal properties of Cr2AlB2 are performed using the pseudopotential plane-wave method within the generalized gradient approximation (GGA). Calculation of the elastic constant and phonon dispersion indicates that Cr2AlB2 is mechanically and thermodynamically stable. Analysis of the band structure and density of states indicates that Cr2AlB2 is metallic. The thermal properties under increasing temperature and pressure are investigated using the quasi-harmonic Debye model. The results show that anharmonic effects on Cr2AlB2 are important at low temperature and high pressure. The calculated equilibrium primitive cell volume is 95.91 Å3 at T = 300 K, P = 0 GPa. The ability of Cr2AlB2 to resist volume changes becomes weaker with increasing temperature and stronger with increasing pressure. Analysis of optical properties of Cr2AlB2 shows that the static dielectric function of Cr2AlB2 is 53.1, and the refractive index n0 is 7.3. If the incident light has a frequency exceeding 16.09 eV, which is the plasma frequency of Cr2AlB2, Cr2AlB2 changes from metallic to dielectric material.

Key wordselectronic structure    optical properties    first-principles calculations    Cr2AlB2    thermal properties
收稿日期: 2017-05-23      出版日期: 2018-01-24
Corresponding Author(s): Xiao-Hong Li   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(2): 136501.
Xiao-Hong Li, Hong-Ling Cui, Rui-Zhou Zhang. Structural, optical, and thermal properties of MAX-phase Cr2AlB2. Front. Phys. , 2018, 13(2): 136501.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0743-1
https://academic.hep.com.cn/fop/CN/Y2018/V13/I2/136501
1 M. W. Barsoum, The Mn+1AXn phases: A new class of solids, Prog. Solid State Chem. 28(1–4), 201 (2000)
https://doi.org/10.1016/S0079-6786(00)00006-6
2 P. Eklund, M. Beckers, U. Jansson, H. Hogberg, and L. Hultman, The Mn+1AXnphases: Materials science and thin-film processing, Thin Solid Films 518(8), 1851 (2010)
https://doi.org/10.1016/j.tsf.2009.07.184
3 W. Jeitschko, Die Kristallstruktur von MoAlB, Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 97, 1472(1966)
4 W. Jeitschko, The crystal structure of Fe2AlB2, Acta Crystallogr. B 25(1), 163 (1969)
https://doi.org/10.1107/S0567740869001944
5 H. Y. Chung, M. B. Weinberger, J. B. Levine, A. Kavner, J. M. Yang, S. H. Tolbert, and R. B. Kaner, Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure, Science 316(5823), 436 (2007)
https://doi.org/10.1126/science.1139322
6 P. Rogl, in: Inorganic Reactions and Methods, edited by A. Hagen, New York: Wiley, 1991
7 A. J. Jr Frueh, Confirmation of the structure of chromium boride, CrB, Acta Crystallogr. 4(1), 66 (1951)
https://doi.org/10.1107/S0365110X51000118
8 Y. B. Kuz’ma, Crystal structure of the compound YCrB4 and its analogs, Sov. Phys. Crystallogr. 15, 312 (1970)
9 Y. B. Kuz’ma and P. I. Krypyakevich, Crystal structure of Cr3AlB4, Dopovidi Akademii Nauk Ukrains’koi RSR, Seriya A-Fiziko-Tekhnichni ta Matematichni Nauki, 34, 1118 (1972)
10 M. Ade and H. Hillebrecht, Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: The first members of the series (CrB2)nCrAl with n= 1,2, 3 and a unifying concept for ternary borides as MAB-Phases, Inorg. Chem. 54(13), 6122 (2015)
https://doi.org/10.1021/acs.inorgchem.5b00049
11 P. Pavone, K. Karch, O. Schutt, D. Strauch, W. Windl, P. Giannozzi, and S. Baroni, Ab Initiolattice dynamics of diamond, Phys. Rev. B 48(5), 3156 (1993)
https://doi.org/10.1103/PhysRevB.48.3156
12 S. Biernacki and M. Scheffler, Negative thermal expansion of diamond and zinc-blende semiconductors, Phys. Rev. Lett. 63(3), 290 (1989)
https://doi.org/10.1103/PhysRevLett.63.290
13 G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
14 G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
15 P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem. 98(45), 11623 (1994)
https://doi.org/10.1021/j100096a001
16 L. Pan, T. C. Lu, and R. Su, Study of electronic structure and optical propertise of g-AlON crystal, Acta Physica Sinica 61, 027101 (2012)
17 K. Huang, Solid-State Physics, Beijing: Higher Education Press, 1998
18 X. C. Shen, The Spectrum and Optical Property of Semiconductor, Beijing: Science Press, 1992
19 P. Vinet, J. H. Rose, J. Ferrante, and J. R. Smith, Universal features of the equation of state of solids, J. Phys.: Condens. Matter 1(11), 1941 (1989)
https://doi.org/10.1088/0953-8984/1/11/002
20 A. Togo, F. Oba, and I. Tanaka, First-Principles calculations of the ferroelastic transition between rutiletype and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008)
https://doi.org/10.1103/PhysRevB.78.134106
21 F. D. Murnaghan, On the theory of the tension of an elastic cylinder, Proc. Natl. Acad. Sci. USA 30(12), 382 (1944)
https://doi.org/10.1073/pnas.30.12.382
22 M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, First-Principles simulation: Ideas, illustrations and the CASTEP Code, J. Phys.: Condens. Matter 14(11), 2717 (2002)
https://doi.org/10.1088/0953-8984/14/11/301
23 S. Wang, X. Yu, J. Zhang, Y. Zhang, L. Wang, K. Leinenweber, H. Xu, D. Popov, C. Park, W. Yang, D. He, and Y. Zhao, Crystal structures, elastic properties, and hardness of high-pressure synthesized CrB2 and CrB4, J. Superhard Mater. 36(4), 279 (2014)
https://doi.org/10.3103/S1063457614040066
24 S. K. R. Patil, S. V. Khare, B. R. Tuttle, J. K. Bording, and S. Kodambaka, Mechanical stability of possible structures of PtN investigated using first-principles calculations, Phys. Rev. B 73(10), 104118 (2006)
https://doi.org/10.1103/PhysRevB.73.104118
25 T. Ma, H. Li, X. Zheng, S. Wang, X. Wang, H. Zhao, S. Han, J. Liu, R. Zhang, P. Zhu, Y. Long, J. Cheng, Y. Ma, Y. Zhao, C. Jin, and X. Yu, Ultrastrong boron frameworks in ZrB12: A highway for electron conducting, Adv. Mater. 29(3), 1604003 (2017)
https://doi.org/10.1002/adma.201604003
26 S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, The London, Edinbrugh, and Dublin Philosophical Magazine and Journal of Science 45(367), 823 (1954)
https://doi.org/10.1080/14786440808520496
27 X. Q. Chen, H. Y. Niu, D. Z. Li, and Y. Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics 19(9), 1275 (2011)
https://doi.org/10.1016/j.intermet.2011.03.026
28 W. L. Johnson and A. R. Williams, Structure and properties of transition-metal-metalloid glasses based on refractory metals, Phys. Rev. B 20(4), 1640 (1979)
https://doi.org/10.1103/PhysRevB.20.1640
29 A. P. Thakoor, J. L. Lamb, S. K. Khanna, M. Mehra, and W. L. Johnson, Refractory amorphous metallic (W0.6 Re0.4)76B24 coatings on steel substrates, J. Appl. Phys. 58(9), 3409 (1985)
https://doi.org/10.1063/1.336295
30 L. Han, S. Wang, J. Zhu, S. Han, W. Li, B. Chen, X. Wang, X. Yu, B. Liu, R. Zhang, Y. Long, J. Cheng, J. Zhang, Y. Zhao, and C. Jin, Hardness, elastic, and electronic properties of chromium monoboride, Appl. Phys. Lett. 106(22), 221902 (2015)
https://doi.org/10.1063/1.4922147
31 S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73(2), 515 (2001)
https://doi.org/10.1103/RevModPhys.73.515
32 P. Debye, Zur Theorie der spezifischen Wärmen, Ann. Phys. 344(14), 789 (1912)
https://doi.org/10.1002/andp.19123441404
33 A. T. Petit and P. L. Dulong, Recherches Sur quelques points importans de la theorie de la chaleur, Annales de chimie et de physique 10, 395 (1819)
34 M. D. Lokman Ali and M. D. Zahidur Rahaman, The Structural, elastic, electronic and optical properties of cubic perovskite SrVO3 compound: An ab initiostudy, International Journal of Materials Science and Applications 5(5), 202 (2016)
https://doi.org/10.11648/j.ijmsa.20160505.14
35 C. L. Li, H. Wang, B. Wang, and R. Wang, Firstprinciples study of the structure, electronic, and optical properties of orthorhombic BiInO3, Appl. Phys. Lett. 91(7), 071902 (2007)
https://doi.org/10.1063/1.2770761
36 H. Wang, B. Wang, Q. K. Li, Z. Y. Zhu, R. Wang, and C. H. Woo, First-principles study of the cubic perovskites BiMO3 (M= Al, Ga, In, and Sc), Phys. Rev. B 75(24), 245209 (2007)
https://doi.org/10.1103/PhysRevB.75.245209
37 M. Q. Cai, Z. Yin, and M. S. Zhang, First-principles study of optical properties of barium titanate, Appl. Phys. Lett. 83(14), 2805 (2003)
https://doi.org/10.1063/1.1616631
38 M. Xu, S. Y. Wang, G. Yin, J. Li, Y. X. Zheng, L. Y. Chen, and Y. Jia, Optical properties of cubic Ti3N4, Zr3N4 and Hf3N4, Appl. Phys. Lett. 89(15), 151908 (2006)
https://doi.org/10.1063/1.2360937
39 M. D. Rahman, M. Z. Rahaman, and M. A. Rahman, The structural, elastic, electronic and optical properties of MgCu under pressure: A first-principles study, Int. J. Mod. Phys. B 30(27), 1650199 (2016)
https://doi.org/10.1142/S021797921650199X
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed