Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (4): 42501   https://doi.org/10.1007/s11467-019-0891-6
  本期目录
Transformation devices with optical nihility media and reduced realizations
Lin Xu1(), Qian-Nan Wu2, Yang-Yang Zhou3, Huan-Yang Chen3()
1. Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education & Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
2. School of Science, North University of China, Taiyuan 030051, China
3. Institute of Electromagnetics and Acoustics and Department of Electronic Science, Xiamen University, Xiamen 361005, China
 全文: PDF(6989 KB)  
Abstract

Starting from optical nihility media (ONM), we design several intriguing devices with transformation optics method in two dimensions, such as a wave splitter, a concave lens, a field rotator, a concentrator, and an invisibility cloak. Though the extreme anisotropic property of ONM hinders the fabrication of these devices. We demonstrate that those devices could be effectively realized by simplified materials with Fabry–Pérot resonances (FPs) at discrete frequencies. Moreover, we propose a reduced version of simplified materials with FPs to construct a concentrator and a rotator, which is feasible in experimental fabrications. The simulations of total scattering cross-sections confirm their functionalities.

Key wordstransformation optics    optical nihility media    Fabry–Pérot resonances
收稿日期: 2019-02-10      出版日期: 2019-04-17
Corresponding Author(s): Lin Xu,Huan-Yang Chen   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(4): 42501.
Lin Xu, Qian-Nan Wu, Yang-Yang Zhou, Huan-Yang Chen. Transformation devices with optical nihility media and reduced realizations. Front. Phys. , 2019, 14(4): 42501.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0891-6
https://academic.hep.com.cn/fop/CN/Y2019/V14/I4/42501
1 U. Leonhardt, Optical conformal mapping, Science 312(5781), 1777 (2006)
https://doi.org/10.1126/science.1126493
2 J. B. Pendry, D. Schurig, and D. R. Smith, Controlling electromagnetic fields, Science 312(5781), 1780 (2006)
https://doi.org/10.1126/science.1125907
3 U. Leonhardt and T. G. Philbin, General relativity in electrical engineering, New J. Phys. 8(10), 247 (2006)
https://doi.org/10.1088/1367-2630/8/10/247
4 U. Leonhardt and T. Philbin, Geometry and Light: The Science of Invisibility, Dover Inc. Mineola, New York, 2010
5 A. Einstein, Die grundlage der allgemeinen relativitätstheorie, Ann. Phys. 354(7), 769 (1916)
https://doi.org/10.1002/andp.19163540702
6 H. Chen, C. T. Chan, and P. Sheng, Transformation optics and metamaterials, Nat. Mater. 9(5), 387 (2010)
https://doi.org/10.1038/nmat2743
7 A. V. Kildishev and V. M. Shalaev, Transformation optics and metamaterials, Phys. Uspekhi 54(1), 53 (2011)
https://doi.org/10.3367/UFNe.0181.201101e.0059
8 B. Zhang, Electrodynamics of transformation-based invisibility cloaking, Light Sci. Appl. 1(10), e32 (2012)
https://doi.org/10.1038/lsa.2012.32
9 P. Kinsler and M. W. McCall, The futures of transformations and metamaterials, Photon. Nanostructures 15, 10 (2015)
https://doi.org/10.1016/j.photonics.2015.04.005
10 F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, Transformation Optics: From Classic Theory and Applications to its New Branches, Laser Photon. Rev. 11(6), 1700034 (2017)
https://doi.org/10.1002/lpor.201700034
11 M. McCall, J. Pendry, V. Galdi, Y. Lai, S. Horsley, J. Li, J. Zhu, R. Mitchell-Thomas, O. Quevedo-Teruel, P. Tassin, V. Ginis, E. Martini, G. Minatti, S. Maci, M. Ebrahimpouri, Y. Hao, P. Kinsler, J. Gratus, J. M. Lukens, A. M. Weiner, U. Leonhardt, I. I. Smolyaninov, V. N. Smolyaninova, R. T. Thompson, M. Wegener, M. Kadic, and S. A. Cummer, Roadmap on transformation optics, J. Opt. 20(6), 063001 (2018)
https://doi.org/10.1088/2040-8986/aab976
12 L. Xu and H. Chen, Conformal transformation optics, Nat. Photon. 9(1), 15 (2015)
https://doi.org/10.1038/nphoton.2014.307
13 D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science 314(5801), 977 (2006)
https://doi.org/10.1126/science.1133628
14 J. Li and J. Pendry, Hiding under the carpet: A new strategy for cloaking, Phys. Rev. Lett. 101(20), 203901 (2008)
https://doi.org/10.1103/PhysRevLett.101.203901
15 R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, Broadband ground-plane cloak, Science 323(5912), 366 (2009)
https://doi.org/10.1126/science.1166949
16 H. F. Ma and T. J. Cui, Three-dimensional broadband ground-plane cloak made of metamaterials, Nat. Commun. 1(3), 21 (2010)
https://doi.org/10.1038/ncomms1023
17 M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations, Photon. Nanostructures 6(1), 87 (2008)
https://doi.org/10.1016/j.photonics.2007.07.013
18 M. M. Sadeghi, S. Li, L. Xu, B. Hou, and H. Chen, Transformation optics with Fabry–Pérot resonances, Sci. Rep. 5(1), 8680 (2015)
https://doi.org/10.1038/srep08680
19 P. Zhao, L. Xu, G. Cai, N. Liu, and H. Chen, A feasible approach to field concentrators of arbitrary shapes, Front. Phys. 13, 134205 (2018)
https://doi.org/10.1007/s11467-018-0771-5
20 M. Y. Zhou, L. Xu, L. C. Zhang, J. Wu, Y. B. Li, and H. Y. Chen, Perfect invisibility concentrator with simplified material parameters, Front. Phys. 13(5), 134101 (2018)
https://doi.org/10.1007/s11467-018-0764-4
21 H. Chen and C. Chan, Transformation media that rotate electromagnetic fields, Appl. Phys. Lett. 90(24), 241105 (2007)
https://doi.org/10.1063/1.2748302
22 H. Chen and C. Chan, Electromagnetic wave manipulation by layered systems using the transformation media concept, Phys. Rev. B 78(5), 054204 (2008)
https://doi.org/10.1103/PhysRevB.78.054204
23 H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. Chan, Design and experimental realization of a broadband transformation media field rotator at microwave frequencies, Phys. Rev. Lett. 102(18), 183903 (2009)
https://doi.org/10.1103/PhysRevLett.102.183903
24 A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, Electromagnetic wormholes and virtual magnetic monopoles from metamaterials, Phys. Rev. Lett. 99(18), 183901 (2007)
https://doi.org/10.1103/PhysRevLett.99.183901
25 H. Chen and C. T. Chan, Acoustic cloaking and transformation acoustics, J. Phys. D 43(11), 113001 (2010)
https://doi.org/10.1088/0022-3727/43/11/113001
26 C. Li, L. Xu, L. Zhu, S. Zou, Q. H. Liu, Z. Wang, and H. Chen, Concentrators for water waves, Phys. Rev. Lett. 121(10), 104501 (2018)
https://doi.org/10.1103/PhysRevLett.121.104501
27 H. Chen, J. Yang, J. Zi, and C. T. Chan, Transformation media for linear liquid surface waves, EPL 85(2), 24004 (2009)
https://doi.org/10.1209/0295-5075/85/24004
28 M. Brun, S. Guenneau, and A. B. Movchan, Achieving control of in-plane elastic waves, Appl. Phys. Lett. 94(6), 061903 (2009)
https://doi.org/10.1063/1.3068491
29 A. Norris and A. Shuvalov, Elastic cloaking theory, Wave Motion 48(6), 525 (2011)
https://doi.org/10.1016/j.wavemoti.2011.03.002
30 S. Narayana and Y. Sato, Heat flux manipulation with engineered thermal materials, Phys. Rev. Lett. 108(21), 214303 (2012)
https://doi.org/10.1103/PhysRevLett.108.214303
31 H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, Ultrathin three-dimensional thermal cloak, Phys. Rev. Lett. 112(5), 054301 (2014)
https://doi.org/10.1103/PhysRevLett.112.054301
32 T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C. W. Qiu, Experimental demonstration of a bilayer thermal cloak, Phys. Rev. Lett. 112(5), 054302 (2014)
https://doi.org/10.1103/PhysRevLett.112.054302
33 C. Fan, Y. Gao, and J. Huang, Shaped graded materials with an apparent negative thermal conductivity, Appl. Phys. Lett. 92(25), 251907 (2008)
https://doi.org/10.1063/1.2951600
34 X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. Chan, Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials, Nat. Mater. 10(8), 582 (2011)
https://doi.org/10.1038/nmat3030
35 J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. Chan, and Y. Lai, Ultratransparent media and transformation optics with shifted spatial dispersions, Phys. Rev. Lett. 117(22), 223901 (2016)
https://doi.org/10.1103/PhysRevLett.117.223901
36 A. Lakhtakia, On perfect lenses and nihility, Int. J. Infrared Millim. Waves 23(3), 339 (2002)
https://doi.org/10.1023/A:1015038701978
37 I. Liberal and N. Engheta, Near-zero refractive index photonics, Nat. Photon. 11(3), 149 (2017)
https://doi.org/10.1038/nphoton.2017.13
38 W. Yan, M. Yan, and M. Qiu, Generalized nihility media from transformation optics, J. Opt. 13(2), 024005 (2011)
https://doi.org/10.1088/2040-8978/13/2/024005
39 Q. He, S. Xiao, X. Li, and L. Zhou, Optic-null medium: Realization and applications, Opt. Express 21(23), 28948 (2013)
https://doi.org/10.1364/OE.21.028948
40 F. Sun and S. He, Surface transformation with homogenous optic-null medium, Prog. Electromagnetics Res. 151, 169 (2015)
https://doi.org/10.2528/PIER15042805
41 J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85(18), 3966 (2000)
https://doi.org/10.1103/PhysRevLett.85.3966
42 D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84(18), 4184 (2000)
https://doi.org/10.1103/PhysRevLett.84.4184
43 R. A. Shelby, D. R. Smith, and S. Schultz, Experimental verification of a negative index of refraction, Science 292(5514), 77 (2001)
https://doi.org/10.1126/science.1058847
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed