Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2020, Vol. 15 Issue (2): 22602   https://doi.org/10.1007/s11467-020-0951-y
  本期目录
Light-induced frequency shifts for the lowest vibrational levels of ultracold Cs2 in the molecular pure long-range 0g state
Ji-Zhou Wu1,2, Yu-Qing Li1,2, Wen-Liang Liu1,2, Jie Ma1,2,3(), Lian-Tuan Xiao1,2, Suo-Tang Jia1,2
1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
2. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
3. College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
 全文: PDF(6220 KB)  
Abstract

The light-induced frequency shift (LIFS) of ultracold molecular ro-vibrational levels originates from the strong coupling of the atomic-scattering state and the bound-molecular state. In this paper, we present our experimental determination of the LIFSs of the lowest vibrational levels (ν= 0, 1) in the purely long-range 0g state of ultracold cesium molecules. A high-resolution double photoassociation spectroscopy is developed, which serves as frequency ruler to measure the frequency shifts of the lowest molecular levels for Cs2. The experimental results are qualitatively consistent with the theoretical expectations.

Key wordslight-induced frequency shift    ultracold molecule    double photoassociation spectroscopy    long-range state
收稿日期: 2019-09-03      出版日期: 2020-03-17
Corresponding Author(s): Jie Ma   
 引用本文:   
. [J]. Frontiers of Physics, 2020, 15(2): 22602.
Ji-Zhou Wu, Yu-Qing Li, Wen-Liang Liu, Jie Ma, Lian-Tuan Xiao, Suo-Tang Jia. Light-induced frequency shifts for the lowest vibrational levels of ultracold Cs2 in the molecular pure long-range 0g state. Front. Phys. , 2020, 15(2): 22602.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-020-0951-y
https://academic.hep.com.cn/fop/CN/Y2020/V15/I2/22602
1 I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008)
https://doi.org/10.1103/RevModPhys.80.885
2 J. Eisert, M. Friesdorf, and C. Gogolin, Quantum manybody systems out of equilibrium, Nat. Phys. 11(2), 124 (2015)
https://doi.org/10.1038/nphys3215
3 J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille, Magneto-optical trapping of a diatomic molecule, Nature 512(7514), 286 (2014)
https://doi.org/10.1038/nature13634
4 A. M. Rey, A. V. Gorshkov, C. V. Kraus, M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang, C. Benko, J. Ye, N. D. Lemke, and A. D. Ludlow, Probing many-body interactions in an optical lattice clock, Ann. Phys. 340(1), 311 (2014)
https://doi.org/10.1016/j.aop.2013.11.002
5 J. L. Bohn, A. M. Rey, and J. Ye, Cold molecules: Progress in quantum engineering of chemistry and quantum matter, Science 357(6355), 1002 (2017)
https://doi.org/10.1126/science.aam6299
6 N. Goldman, J. C. Budich, and P. Zoller, Topological quantum matter with ultracold gases in optical lattices, Nat. Phys. 12(7), 639 (2016)
https://doi.org/10.1038/nphys3803
7 K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, Ultracold photoassociation spectroscopy: Longrange molecules and atomic scattering, Rev. Mod. Phys. 78(2), 483 (2006)
https://doi.org/10.1103/RevModPhys.78.483
8 C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82(2), 1225 (2010)
https://doi.org/10.1103/RevModPhys.82.1225
9 N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, Stimulated Raman adiabatic passage in physics, chemistry, and beyond, Rev. Mod. Phys. 89(1), 015006 (2017)
https://doi.org/10.1103/RevModPhys.89.015006
10 L. Anderegg, B. L. Augenbraun, Y. Bao, S. Burchesky, L. W. Cheuk, W. Ketterle, and J. M. Doyle, Laser cooling of optically trapped molecules, Nat. Phys. 14(9), 890 (2018)
https://doi.org/10.1038/s41567-018-0191-z
11 J. Rui, H. Yang, L. Liu, D. C. Zhang, Y. X. Liu, J. Nan, Y. A. Chen, B. Zhao, and J. W. Pan, Controlled state-tostate atom-exchange reaction in an ultracold atom–dimer mixture, Nat. Phys. 13(7), 699 (2017)
https://doi.org/10.1038/nphys4095
12 L. R. Liu, J. D. Hood, Y. Yu, J. T. Zhang, N. R. Hutzler, T. Rosenband, and K. K. Ni, Building one molecule from a reservoir of two atoms, Science 360(6391), 900 (2018)
https://doi.org/10.1126/science.aar7797
13 W. B. Cairncross, D. N. Gresh, M. Grau, K. C. Cossel, T. S. Roussy, Y. Q. Ni, Y. Zhou, J. Ye, and E. A. Cornell, Precision measurement of the electron’s electric dipole moment using trapped molecular ions, Phys. Rev. Lett. 119, 153001 (2017)
https://doi.org/10.1103/PhysRevLett.119.153001
14 I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86(1), 153 (2014)
https://doi.org/10.1103/RevModPhys.86.153
15 S. A. Moses, J. P. Covey, M. T. Miecnikowski, D. S. Jin, and J. Ye, New frontiers for quantum gases of polar molecules, Nat. Phys. 13(1), 13 (2017)
https://doi.org/10.1038/nphys3985
16 O. Dulieu and C. Gabbanini, The formation and interactions of cold and ultracold molecules: New challenges for interdisciplinary physics, Rep. Prog. Phys. 72, 086401 (2009)
https://doi.org/10.1088/0034-4885/72/8/086401
17 D. Comparat, C. Drag, A. Fioretti, O. Dulieu, and P. Pillet, Photoassociative spectroscopy and formation of cold molecules in cold cesium vapor: Trap-loss spectrum versus ion spectrum, J. Mol. Spectrosc. 195(2), 229 (1999)
https://doi.org/10.1006/jmsp.1999.7764
18 J. Ma, J. Wu, G. Chen, Q. Fan, H. Feng, X. Dai, W. Sun, L. Xiao, and S. Jia, Experimental determination of the rotational constants of high-lying vibrational levels of ultracold Cs2 in the 0g− purely long-range state, J. Phys. Chem. Lett. 4(21), 3612 (2013)
https://doi.org/10.1021/jz401769z
19 S. Sainis, J. Sage, E. Tiesinga, S. Kotochigova, T. Bergeman, and D. DeMille, Detailed spectroscopy of the Cs2 a3∑+u state and implications for measurements sensitive to variation of the electron-proton mass ratio, Phys. Rev. A 86(2), 022513 (2012)
https://doi.org/10.1103/PhysRevA.86.022513
20 Y. Yang, X. Liu, Y. Zhao, L. Xiao, and S. Jia, Rovibrational dynamics of RbCs on its lowest 1,3∑+ potential curves calculated by coupled cluster method with all-electron basis set, J. Phys. Chem. A 116(46), 11101 (2012)
https://doi.org/10.1021/jp303975x
21 J. Wu, Z. Ji, Y. Zhang, L. Wang, Y. Zhao, J. Ma, L. Xiao, and S. Jia, High sensitive determination of light induced frequency shifts of ultracold cesium molecules, Opt. Lett. 36(11), 2038 (2011)
https://doi.org/10.1364/OL.36.002038
22 P. K. Molony, P. D. Gregory, Z. H. Ji, B. Lu, M. P. Köppinger, C. R. Le Sueur, C. L. Blackley, J. M. Hutson, and S. L. Cornish, Creation of ultracold 87Rb133Cs molecules in the rovibrational ground state, Phys. Rev. Lett. 113, 255301 (2014)
https://doi.org/10.1103/PhysRevLett.113.255301
23 L. Lassablière and G. Quéméner, Controlling the scattering length of ultracold dipolar molecules, Phys. Rev. Lett. 121(16), 163402 (2018)
https://doi.org/10.1103/PhysRevLett.121.163402
24 S. Ospelkaus, K. K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, Quantum-state controlled chemical reactions of ultracold Potassium-Rubidium molecules, Science 327(5967), 853 (2010)
https://doi.org/10.1126/science.1184121
25 M. Portier, S. Moal, J. Kim, M. Leduc, C. Cohen-Tannoudji, and O. Dulieu, Analysis of light-induced frequency shifts in the photoassociation of ultracold metastable helium atoms, J. Phys. B 39(19), S881 (2006)
https://doi.org/10.1088/0953-4075/39/19/S06
26 I. D. Prodan, M. Pichler, M. Junker, R. G. Hulet, and J. L. Bohn, Intensity dependence of photoassociation in a quantum degenerate atomic gas, Phys. Rev. Lett. 91(8), 080402 (2003)
https://doi.org/10.1103/PhysRevLett.91.080402
27 C. McKenzie, J. Hecker Denschlag, H. Häffner, A. Browaeys, L. E. E. de Araujo, F. K. Fatemi, K. M. Jones, J. E. Simsarian, D. Cho, A. Simoni, E. Tiesinga, P. S. Julienne, K. Helmerson, P. D. Lett, S. L. Rolston, and W. D. Phillips, Photoassociation of sodium in a bose-einstein condensate, Phys. Rev. Lett. 88(12), 120403 (2002)
https://doi.org/10.1103/PhysRevLett.88.120403
28 A. Simoni, P. S. Julienne, E. Tiesinga, and C. J. Williams, Intensity effects in ultracold photoassociation line shapes, Phys. Rev. A 66(6), 063406 (2002)
https://doi.org/10.1103/PhysRevA.66.063406
29 J. L. Bohn and P. S. Julienne, Semianalytic theory of laser-assisted resonant cold collisions, Phys. Rev. A 60(1), 414 (1999)
https://doi.org/10.1103/PhysRevA.60.414
30 Y. Q. Li, G. S. Feng, W. L. Liu, J. Z. Wu, J. Ma, L. T. Xiao, and S. T. Jia, Control of light induced frequency shift in ultracold cesium molecules by an external magnetic field, Opt. Lett. 40(10), 2241 (2015)
https://doi.org/10.1364/OL.40.002241
31 W. Liu, X. Wang, J. Wu, X. Su, S. Wang, V. B. Sovkov, J. Ma, L. Xiao, and S. Jia, Experimental observation and determination of the light induced frequency shift of hyperfine levels of ultracold polar molecules, Phys. Rev. A 96(2), 022504 (2017)
https://doi.org/10.1103/PhysRevA.96.022504
32 R. Wester, S. D. Kraft, M. Mudrich, M. Staudt, J. Lange, N. Vanhaecke, O. Dulieu, and M. Weidemüller, Photoassociation inside an optical dipole trap: Absolute rate coefficients and Franck–Condon factors, Appl. Phys. B 79(8), 993 (2004)
https://doi.org/10.1007/s00340-004-1649-5
33 N. Bouloufa, A. Crubellier, and O. Dulieu, Reexamination of the 0g− pure long-range state of Cs2: Prediction of missing levels in the photoassociation spectrum, Phys. Rev. A 75, 052501 (2007)
https://doi.org/10.1103/PhysRevA.75.052501
34 Y. Zhang, J. Ma, J. Wu, L. Wang, L. Xiao, and S. Jia, Experimental observation of the lowest levels in the photoassociation spectroscopy of the 0g− purely-long-range state of Cs2, Phys. Rev. A 87, 030503 (2013)
https://doi.org/10.1103/PhysRevA.87.030503
35 J. Wu, W. Liu, Y. Li, J. Ma, L. Xiao, and S. Jia, Experimental determination of rotational constants of low-lying vibrational levels in the 0g− pure long-range state of ultracold Cs2 molecule, J. Quant. Spectrosc. Radiat. Transf. 191, 13 (2017)
https://doi.org/10.1016/j.jqsrt.2017.01.026
36 J. Wu, J. Ma, Y. Zhang, Y. Li, L. Wang, Y. Zhao, G. Chen, L. Xiao, and S. Jia, High sensitive trap loss spectroscopic detection of the lowest vibrational levels of ultracold molecules, Phys. Chem. Chem. Phys. 13(42), 18921 (2011)
https://doi.org/10.1039/c1cp22314c
37 M. Pichler, H. Chen, and W. C. Stwalley, Photoassociation spectroscopy of ultracold Cs below the 6P3/2 limit, J. Chem. Phys. 121(4), 1796 (2004)
https://doi.org/10.1063/1.1767071
38 A. Fioretti, D. Comparat, C. Drag, C. Amiot, O. Dulieu, F. Masnou-Seeuws, and P. Pillet, Photoassociative spectroscopy of the long-range state, Eur Phys J. D 5, 389 (1999)
https://doi.org/10.1007/s100530050271
39 M. Pichler, H. Chen, and W. C. Stwalley, Photoassociation spectroscopy of ultracold Cs below the 6P1/2 limit, J. Chem. Phys. 121(14), 6779 (2004)
https://doi.org/10.1063/1.1788657
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed