Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (3): 32502   https://doi.org/10.1007/s11467-020-1017-x
  本期目录
Extracting the phase distribution of the electron wave packet ionized by an elliptically polarized laser pulse
Ya-Nan Qin1, Min Li1(), Yudi Feng1, Siqiang Luo1, Yueming Zhou1, Peixiang Lu1,2()
1. Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
2. Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China
 全文: PDF(1424 KB)  
Abstract

We use an interferometic scheme to extract the phase distribution of the electron wave packet from above-threshold ionization in elliptically polarized laser fields. In this scheme, an electron wave packet released from a circularly polarized laser pulse acts as a reference wave and interferes with the electron wave packet ionized by a time-delayed counter-rotating elliptically polarized laser field. The generated vortex-shaped interference pattern in the photoelectron momentum distribution enables us to extract the phase distribution of the electron wave packet in the elliptically polarized laser pulse with high precision. By artificially screening the ionic potential at different ranges when solving the time-dependent Schördinger equation, we find that the angle-dependent phase distribution of the electron wave packet in the elliptically polarized laser field shows an obvious angular shift as compared to the strong-field approximation, whose value is the same as the attoclock shift. We also show that the amplitude of the angle-dependent phase distribution is sensitive to the ellipticity of the laser pulse, providing an alternative way to precisely calibrate the laser ellipticity in the attoclock measurement.

Key wordsabove-threshold ionization    photoelectron interference    vortex structure
收稿日期: 2020-07-28      出版日期: 2020-12-14
Corresponding Author(s): Min Li,Peixiang Lu   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(3): 32502.
Ya-Nan Qin, Min Li, Yudi Feng, Siqiang Luo, Yueming Zhou, Peixiang Lu. Extracting the phase distribution of the electron wave packet ionized by an elliptically polarized laser pulse. Front. Phys. , 2021, 16(3): 32502.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-020-1017-x
https://academic.hep.com.cn/fop/CN/Y2021/V16/I3/32502
1 G. G. Paulus, W. Nicklich, H. Xu, P. Lambropoulos, and H. Walther, Plateau in above threshold ionization spectra, Phys. Rev. Lett. 72(18), 2851 (1994)
https://doi.org/10.1103/PhysRevLett.72.2851
2 H. Kang, W. Quan, Y. Wang, Z. Lin, M. Wu, H. Liu, X. Liu, B. B. Wang, H. J. Liu, Y. Q. Gu, X. Y. Jia, J. Liu, J. Chen, and Y. Cheng, Structure effects in angle-resolved high-order above-threshold ionization of molecules, Phys. Rev. Lett. 104(20), 203001 (2010)
https://doi.org/10.1103/PhysRevLett.104.203001
3 J. L. Krause, K. J. Schafer, and K. C. Kulander, Highorder harmonic generation from atoms and ions in the high intensity regime, Phys. Rev. Lett. 68(24), 3535 (1992)
https://doi.org/10.1103/PhysRevLett.68.3535
4 F. Krausz and M. Ivanov, Attosecond physics, Rev. Mod. Phys. 81(1), 163 (2009)
https://doi.org/10.1103/RevModPhys.81.163
5 B. Walker, B. Sheehy, L. F. DiMauro, P. Agostini, K. J. Schafer, and K. C. Kulander, Precision measurement of strong field double ionization of Helium, Phys. Rev. Lett. 73(9), 1227 (1994)
https://doi.org/10.1103/PhysRevLett.73.1227
6 W. Becker, X. Liu, P. J. Ho, and J. H. Eberly, Theories of photoelectron correlation in laser-driven multiple atomic ionization, Rev. Mod. Phys. 84(3), 1011 (2012)
https://doi.org/10.1103/RevModPhys.84.1011
7 G. G. Paulus, F. Zacher, H. Walther, A. Lohr, W. Becker, and M. Kleber, Above-threshold ionization by an elliptically polarized field: Quantum tunneling interferences and classical dodging, Phys. Rev. Lett. 80(3), 484 (1998)
https://doi.org/10.1103/PhysRevLett.80.484
8 S. P. Goreslavski, G. G. Paulus, S. V. Popruzhenko, and N. I. Shvetsov-Shilovski, Coulomb asymmetry in abovethreshold ionization, Phys. Rev. Lett. 93(23), 233002 (2004)
https://doi.org/10.1103/PhysRevLett.93.233002
9 X. Wang and J. H. Eberly, Effects of elliptical polarization on strong-field short-pulse double ionization, Phys. Rev. Lett. 103(10), 103007 (2009)
https://doi.org/10.1103/PhysRevLett.103.103007
10 C. Liu and K. Z. Hatsagortsyan, Coulomb focusing in above-threshold ionization in elliptically polarized midinfrared strong laser fields, Phys. Rev. A 85(2), 023413 (2012)
https://doi.org/10.1103/PhysRevA.85.023413
11 C. Wang, X. Lai, Z. Hu, Y. Chen, W. Quan, H. Kang, C. Gong, and X. Liu, Strong-field atomic ionization in elliptically polarized laser fields, Phys. Rev. A 90(1), 013422 (2014)
https://doi.org/10.1103/PhysRevA.90.013422
12 P. Eckle, M. Smolarski, P. Schlup, J. Biegert, A. Staudte, M. Schöffler, H. G. Muller, R. Dörner, and U. Keller, Attosecond angular streaking, Nat. Phys. 4(7), 565 (2008)
https://doi.org/10.1038/nphys982
13 P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker, and U. Keller, Attosecond ionization and tunneling delay time measurements in helium, Science 322(5907), 1525 (2008)
https://doi.org/10.1126/science.1163439
14 J. Liang, Y. Zhou, J. Tan, M. He, Q. Ke, Y. Zhao, M. Li, W. Jiang, and P. Lu, Low-energy photoelectron interference structure in attosecond streaking, Opt. Express 27(26), 37736 (2019)
https://doi.org/10.1364/OE.27.037736
15 J. Yan, W. Xie, M. Li, K. Liu, S. Luo, C. Cao, K. Guo, W. Cao, P. Lan, Q. Zhang, Y. Zhou, and P. Lu, Photoelectron ionization time of aligned molecules clocked by attosecond angular streaking, Phys. Rev. A 102(1), 013117 (2020)
https://doi.org/10.1103/PhysRevA.102.013117
16 C. Wang, X. Li, X. Xiao, Y. Yang, S. Luo, X. Yu, X. Xu, L. Peng, Q. Gong, and D. Ding, Accurate in situ measurement of ellipticity based on subcycle ionization dynamics, Phys. Rev. Lett. 122(1), 013203 (2019)
https://doi.org/10.1103/PhysRevLett.122.013203
17 I. A. Ivanov and A. S. Kheifets, Strong-field ionization of He by elliptically polarized light in attoclock configuration, Phys. Rev. A 89, 021402(R) (2014)
https://doi.org/10.1103/PhysRevA.89.021402
18 L. Torlina, F. Morales, J. Kaushal, I. Ivanov, A. Kheifets, A. Zielinski, A. Scrinzi, H. G. Muller, S. Sukiasyan, M. Ivanov, and O. Smirnova, Interpreting attoclock measurements of tunnelling times, Nat. Phys. 11(6), 503 (2015)
https://doi.org/10.1038/nphys3340
19 N. Camus, E. Yakaboylu, L. Fechner, M. Klaiber, M. Laux, Y. Mi, K. Z. Hatsagortsyan, T. Pfeifer, C. H. Keitel, and R. Moshammer, Experimental evidence for quantum tunneling time, Phys. Rev. Lett. 119(2), 023201 (2017)
https://doi.org/10.1103/PhysRevLett.119.023201
20 K. Liu, M. Li, W. Xie, K. Guo, S. Luo, J. Yan, Y. Zhou, and P. Lu, Revealing the effect of atomic orbitals on the phase distribution of an ionizing electron wave packet with circularly polarized two-color laser fields, Opt. Express 28(8), 12439 (2020)
https://doi.org/10.1364/OE.386299
21 D. Pengel, S. Kerbstadt, D. Johannmeyer, L. Englert, T. Bayer, and M. Wollenhaupt, Electron vortices in femtosecond multiphoton ionization, Phys. Rev. Lett. 118(5), 053003 (2017)
https://doi.org/10.1103/PhysRevLett.118.053003
22 X. Xiao, M. Wang, H. Liang, Q. Gong, and L. Peng, Proposal for measuring electron displacement induced by a short laser pulse, Phys. Rev. Lett. 122(5), 053201 (2019)
https://doi.org/10.1103/PhysRevLett.122.053201
23 N. Ramsey, A molecular beam resonance method with separated oscillating fields, Phys. Rev. 78(6), 695 (1950)
https://doi.org/10.1103/PhysRev.78.695
24 J. M. Ngoko Djiokap, S. X. Hu, L. B. Madsen, N. L. Manakov, A. V. Meremianin, and A. F. Starace, Electron vortices in photoionization by circularly polarized attosecond pulses, Phys. Rev. Lett. 115(11), 113004 (2015)
https://doi.org/10.1103/PhysRevLett.115.113004
25 J. M. Ngoko Djiokap, A. V. Meremianin, N. L. Manakov, S. X. Hu, L. B. Madsen, and A. F. Starace, Multistart spiral electron vortices in ionization by circularly polarized UV pulses, Phys. Rev. A 94(1), 013408 (2016)
https://doi.org/10.1103/PhysRevA.94.013408
26 J. M. Djiokap, A. V. Meremianin, N. L. Manakov, S. X. Hu, L. B. Madsen, and A. F. Starace, Kinematical vortices in double photoionization of helium by attosecond pulses, Phys. Rev. A 96(1), 013405 (2017)
https://doi.org/10.1103/PhysRevA.96.013405
27 J. M. Ngoko Djiokap, A. V. Meremianin, N. L. Manakov, L. B. Madsen, S. X. Hu, and A. F. Starace, Dynamical electron vortices in attosecond double photoionization of H2, Phys. Rev. A 98(6), 063407 (2018)
https://doi.org/10.1103/PhysRevA.98.063407
28 K. J. Yuan, S. Chelkowski, and A. D. Bandrauk, Photoelectron momentum distributions of molecules in bichromatic circularly polarized attosecond UV laser fields, Phys. Rev. A 93(5), 053425 (2016)
https://doi.org/10.1103/PhysRevA.93.053425
29 K. J. Yuan, H. Lu, and A. D. Bandrauk, Photoionization of triatomic molecular ions H32+ by intense bichromatic circularly polarized attosecond UV laser pulses, J. Phys. At. Mol. Opt. Phys. 50(12), 124004 (2017)
https://doi.org/10.1088/1361-6455/aa72fa
30 J. Chen, X. Zheng, and T. Zhang, Vortex structures in the photoelectron momentum distributions of negative hydrogen ions induced by a short laser pulse, Proc. SPIE 11333, 46 (2019)
https://doi.org/10.1117/12.2547654
31 D. Pengel, S. Kerbstadt, L. Englert, T. Bayer, and M. Wollenhaupt, Control of three-dimensional electron vortices from femtosecond multiphoton ionization, Phys. Rev. A 96(4), 043426 (2017)
https://doi.org/10.1103/PhysRevA.96.043426
32 S. Kerbstadt, K. Eickhoff, T. Bayer, and M. Wollenhaupt, Odd electron wave packets from cycloidal ultrashort laser fields, Nat. Commun. 10(1), 658 (2019)
https://doi.org/10.1038/s41467-019-08601-7
33 S. Yu, Y. Wang, X. Lai, Y. Huang, W. Quan, and X. Liu, Coulomb effect on photoelectron momentum distributions in orthogonal two-color laser fields, Phys. Rev. A 94(3), 033418 (2016)
https://doi.org/10.1103/PhysRevA.94.033418
34 M. D. Feit, J. A. Jr Fleck, and A. Steiger, Solution of the Schördinger equation by a spectral method, J. Comput. Phys. 47(3), 412 (1982)
https://doi.org/10.1016/0021-9991(82)90091-2
35 X. M. Tong, K. Hino, and N. Toshima, Phase-dependent atomic ionization in few-cycle intense laser fields, Phys. Rev. A 74, 031405(R) (2006)
https://doi.org/10.1103/PhysRevA.74.031405
36 M. Protopapas, C. H. Keitel, and P. L. Knight, Atomic physics with super-high intensity lasers, Rep. Prog. Phys. 60(4), 389 (1997)
https://doi.org/10.1088/0034-4885/60/4/001
37 M. Li, J. W. Geng, H. Liu, Y. Deng, C. Wu, L. Y. Peng, Q. Gong, and Y. Liu, Classical-quantum correspondence for above-threshold ionization, Phys. Rev. Lett. 112(11), 113002 (2014)
https://doi.org/10.1103/PhysRevLett.112.113002
38 H. Xie, M. Li, S. Luo, Y. Li, Y. Zhou, W. Cao, and P. Lu, Energy-dependent angular shifts in the photoelectron momentum distribution for atoms in elliptically polarized laser pulses, Phys. Rev. A 96(6), 063421 (2017)
https://doi.org/10.1103/PhysRevA.96.063421
39 M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, Theory of high-harmonic generation by lowfrequency laser fields, Phys. Rev. A 49(3), 2117 (1994)
https://doi.org/10.1103/PhysRevA.49.2117
40 M. Li, Y. Liu, H. Liu, Q. Ning, L. Fu, J. Liu, Y. Deng, C. Wu, L. Peng, and Q. Gong, Subcycle dynamics of Coulomb asymmetry in strong elliptical laser fields, Phys. Rev. Lett. 111(2), 023006 (2013)
https://doi.org/10.1103/PhysRevLett.111.023006
41 A. S. Landsman, C. Hofmann, A. N. Pfeiffer, C. Cirelli, and U. Keller, Unified approach to probing Coulomb effects in tunnel ionization for any ellipticity of laser light, Phys. Rev. Lett. 111(26), 263001 (2013)
https://doi.org/10.1103/PhysRevLett.111.263001
42 P. A. Korneev, S. V. Popruzhenko, S. P. Goreslavski, T. M. Yan, D. Bauer, W. Becker, M. Kübel, M. F. Kling, C. Rödel, M. Wünsche, and G. G. Paulus, Interference carpets in above-threshold ionization: From the Coulombfree to the coulomb-dominated regime, Phys. Rev. Lett. 108(22), 223601 (2012)
https://doi.org/10.1103/PhysRevLett.108.223601
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed