Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (3): 33203   https://doi.org/10.1007/s11467-020-1022-0
  本期目录
Non-Gaussian normal diffusion in low dimensional systems
Qingqing Yin1, Yunyun Li1(), Fabio Marchesoni1,2(), Subhadip Nayak3, Pulak K. Ghosh3()
1. Center for Phononics and Thermal Energy Science, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
2. Dipartimento di Fisica, Università di Camerino, I-62032 Camerino, Italy
3. Department of Chemistry, Presidency University, Kolkata 700073, India
 全文: PDF(1495 KB)  
Abstract

Brownian particles suspended in disordered crowded environments often exhibit non-Gaussian normal diffusion (NGND), whereby their displacements grow with mean square proportional to the observation time and non-Gaussian statistics. Their distributions appear to decay almost exponentially according to “universal” laws largely insensitive to the observation time. This effect is generically attributed to slow environmental fluctuations, which perturb the local configuration of the suspension medium. To investigate the microscopic mechanisms responsible for the NGND phenomenon, we study Brownian diffusion in low dimensional systems, like the free diffusion of ellipsoidal and active particles, the diffusion of colloidal particles in fluctuating corrugated channels and Brownian motion in arrays of planar convective rolls. NGND appears to be a transient effect related to the time modulation of the instantaneous particle’s diffusivity, which can occur even under equilibrium conditions. Consequently, we propose to generalize the definition of NGND to include transient displacement distributions which vary continuously with the observation time. To this purpose, we provide a heuristic one-parameter function, which fits all time-dependent transient displacement distributions corresponding to the same diffusion constant. Moreover, we reveal the existence of low dimensional systems where the NGND distributions are not leptokurtic (fat exponential tails), as often reported in the literature, but platykurtic (thin sub-Gaussian tails), i.e., with negative excess kurtosis. The actual nature of the NGND transients is related to the specific microscopic dynamics of the diffusing particle.

Key wordsnon-Gaussian normal diffusion    transport phenomena    stochastic process    active matter
收稿日期: 2020-09-15      出版日期: 2021-03-25
Corresponding Author(s): Yunyun Li,Fabio Marchesoni,Pulak K. Ghosh   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(3): 33203.
Qingqing Yin, Yunyun Li, Fabio Marchesoni, Subhadip Nayak, Pulak K. Ghosh. Non-Gaussian normal diffusion in low dimensional systems. Front. Phys. , 2021, 16(3): 33203.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-020-1022-0
https://academic.hep.com.cn/fop/CN/Y2021/V16/I3/33203
1 B. Wang, S. M. Anthony, S. C. Bae, and S. Granick, Anomalous yet Brownian, Proc. Natl. Acad. Sci. USA 106(36), 15160 (2009)
https://doi.org/10.1073/pnas.0903554106
2 B. Wang, J. Kuo, C. Bae, and S. Granick, When Brownian diffusion is not Gaussian, Nat. Mater. 11(6), 481 (2012)
https://doi.org/10.1038/nmat3308
3 S. Bhattacharya, D. K. Sharma, S. Saurabh, S. De, A. Sain, A. Nandi, and A. Chowdhury, Plasticization of poly(vinylpyrrolidone) thin films under ambient humidity: Insight from single-molecule tracer diffusion dynamics, J. Phys. Chem. B 117(25), 7771 (2013)
https://doi.org/10.1021/jp401704e
4 J. Kim, C. Kim, and B. J. Sung, Simulation study of seemingly Fickian but heterogeneous dynamics of two dimensional colloids, Phys. Rev. Lett. 110(4), 047801 (2013)
https://doi.org/10.1103/PhysRevLett.110.047801
5 G. Kwon, B. J. Sung, and A. Yethiraj, Dynamics in crowded environments: Is non-Gaussian Brownian diffusion normal? J. Phys. Chem. B 118(28), 8128 (2014)
https://doi.org/10.1021/jp5011617
6 J. Guan, B. Wang, and S. Granick, Even hard-sphere colloidal suspensions display Fickian yet non-Gaussian diffusion, ACS Nano 8(4), 3331 (2014)
https://doi.org/10.1021/nn405476t
7 C. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences, Berlin: Springer, 2009
8 E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, Three-dimensional direct imaging of structural relaxation near the colloidal glass transition, Science 287(5453), 627 (2000)
https://doi.org/10.1126/science.287.5453.627
9 J. D. Eaves, and D. R. Reichman, Spatial dimension and the dynamics of supercooled liquids, Proc. Natl. Acad. Sci. USA 106(36), 15171 (2009)
https://doi.org/10.1073/pnas.0902888106
10 K. C. Leptos, J. S. Guasto, J. P. Gollub, A. I. Pesci, and R. E. Goldstein, Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms, Phys. Rev. Lett. 103(19), 198103 (2009)
https://doi.org/10.1103/PhysRevLett.103.198103
11 W. K. Kegel and A. van Blaaderen, Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions, Science 287(5451), 290 (2000)
https://doi.org/10.1126/science.287.5451.290
12 P. Chaudhuri, L. Berthier, and W. Kob, Universal nature of particle displacements close to glass and jamming transitions, Phys. Rev. Lett. 99(6), 060604 (2007)
https://doi.org/10.1103/PhysRevLett.99.060604
13 S. K. Ghosh, A. G. Cherstvy, D. S. Grebenkov, and R. Metzler, Anomalous, non-Gaussian tracer diffusion in crowded two-dimensional environments, New J. Phys. 18(1), 013027 (2016)
https://doi.org/10.1088/1367-2630/18/1/013027
14 W. He, H. Song, Y. Su, L. Geng, B. J. Ackerson, H. B. Peng, and P. Tong, Dynamic heterogeneity and non- Gaussian statistics for acetylcholine receptors on live cell membrane, Nat. Commun. 7(1), 11701 (2016)
https://doi.org/10.1038/ncomms11701
15 K. Białas, J. Łuczka, P. Hänggi, and J. Spiechowicz, Colossal Brownian yet non-Gaussian diffusion induced by nonequilibrium noise, Phys. Rev. E 102, 042121 (2020)
https://doi.org/10.1103/PhysRevE.102.042121
16 M. V. Chubynsky and G. W. Slater, Diffusing diffusivity: A model for anomalous, yet Brownian, diffusion, Phys. Rev. Lett. 113(9), 098302 (2014)
https://doi.org/10.1103/PhysRevLett.113.098302
17 A. G. Cherstvy and R. Metzler, Anomalous diffusion in time-fluctuating non-stationary diffusivity landscapes, Phys. Chem. Chem. Phys. 18(34), 23840 (2016)
https://doi.org/10.1039/C6CP03101C
18 R. Jain and K. L. Sebastian, Diffusion in a crowded, rearranging environment, J. Phys. Chem. B 120(16), 3988 (2016)
https://doi.org/10.1021/acs.jpcb.6b01527
19 R. Jain and K. L. Sebastian, Diffusing diffusivity: A new derivation and comparison with simulations, J. Chem. Sci. 129(7), 929 (2017)
https://doi.org/10.1007/s12039-017-1308-0
20 N. Tyagi and B. J. Cherayil, Non-Gaussian Brownian diffusion in dynamically disordered thermal environments, J. Phys. Chem. B 121(29), 7204 (2017)
https://doi.org/10.1021/acs.jpcb.7b03870
21 L. Luo and M. Yi, Non-Gaussian diffusion in static disordered media, Phys. Rev. E 97(4), 042122 (2018)
https://doi.org/10.1103/PhysRevE.97.042122
22 A. V. Chechkin, F. Seno, R. Metzler, and I. M. Sokolov, Brownian yet non-Gaussian diffusion: From superstatistics to subordination of diffusing diffusivities, Phys. Rev. X 7(2), 021002 (2017)
https://doi.org/10.1103/PhysRevX.7.021002
23 J. Ślęzak, R. Metzler, and M. Magdziarz, Superstatistical generalised Langevin equation: Non-Gaussian viscoelastic anomalous diffusion, New J. Phys. 20(2), 023026 (2018)
https://doi.org/10.1088/1367-2630/aaa3d4
24 Y. Li, F. Marchesoni, D. Debnath, and P. K. Ghosh, Non-Gaussian normal diffusion in a fluctuating corrugated channel, Phys. Rev. Res. 1(3), 033003 (2019)
https://doi.org/10.1103/PhysRevResearch.1.033003
25 P. Hänggi and F. Marchesoni, Artificial Brownian motors: Controlling transport on the nanoscale, Rev. Mod. Phys. 81(1), 387 (2009)
https://doi.org/10.1103/RevModPhys.81.387
26 R. Lipowsky, Generic interactions of flexible membranes, in: Handbook of Biological Physics, Eds. R. Lipowsky and E. Sackmann, Vol. 1, Ch. 11, Elsevier, 1995
https://doi.org/10.1016/S1383-8121(06)80004-7
27 P. S. Burada, P. Hänggi, F. Marchesoni, G. Schmid, and P. Talkner, Diffusion in confined geometries, ChemPhysChem 10(1), 45 (2009)
https://doi.org/10.1002/cphc.200800526
28 X. Yang, C. Liu, Y. Li, F. Marchesoni, P. Hänggi, and H. P. Zhang, Hydrodynamic and entropic effects on colloidal diffusion in corrugated channels, Proc. Natl. Acad. Sci. USA 114(36), 9564 (2017)
https://doi.org/10.1073/pnas.1707815114
29 V. Sposini, A. V. Chechkin, F. Seno, G. Pagnini, and R. Metzler, Random diffusivity from stochastic equations: Comparison of two models for Brownian yet non-Gaussian diffusion, New J. Phys. 20(4), 043044 (2018)
https://doi.org/10.1088/1367-2630/aab696
30 L. Luo and M. Yi, Quenched trap model on the extreme landscape: The rise of subdiffusion and non-Gaussian diffusion, Phys. Rev. E 100(4), 042136 (2019)
https://doi.org/10.1103/PhysRevE.100.042136
31 L. Luo and M. Yi, Ergodicity recovery of random walk in heterogeneous disordered media, Chin. Phys. B 29(5), 050503 (2020)
https://doi.org/10.1088/1674-1056/ab8212
32 For a review, see: H. C. Berg, Random Walk in Biology, Princeton University Press, 1984
33 F. Perrin, Mouvement brownien d’un ellipsoide (I): Dispersion diélectrique pour des molécules ellipsoidales, J. Phys. Radium 5(10), 497 (1934); Mouvement Brownien d’un ellipsoide (II): Rotation libre et dépolarisation des fluorescences (Translation et diffusion de molécules ellipsoidales), J. Phys. Radium VII, 1 (1936)
https://doi.org/10.1051/jphysrad:01934005010049700
34 Y. Han, A. M. Alsayed, M. Nobili, J. Zhang, T. C. Lubensky, and A. G. Yodh, Brownian motion of an ellipsoid, Science 314(5799), 626 (2006)
https://doi.org/10.1126/science.1130146
35 P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, 1992
https://doi.org/10.1007/978-3-662-12616-5
36 S. R. Aragón and R. Pecora, General theory of dynamic light scattering from cylindrically symmetric particles with translational‐rotational coupling, J. Chem. Phys. 82(12), 5346 (1985)
https://doi.org/10.1063/1.448617
37 S. Leitmann, F. Höfling, and T. Franosch, Dynamically crowded solutions of infinitely thin Brownian needles, Phys. Rev. E 96(1), 012118 (2017)
https://doi.org/10.1103/PhysRevE.96.012118
38 S. Prager, Interaction of rotational and translational diffusion, J. Chem. Phys. 23(12), 2404 (1955)
https://doi.org/10.1063/1.1741890
39 S. Jiang and S. Granick (Eds.), Janus particle synthesis, self-assembly and applications, RSC Publishing, Cambridge, 2012
40 A. Walther and A. H. E. Müller, Janus particles: Synthesis, self-assembly, physical properties, and applications, Chem. Rev. 113(7), 5194 (2013)
https://doi.org/10.1021/cr300089t
41 M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao, and R. A. Simha, Hydrodynamics of soft active matter, Rev. Mod. Phys. 85(3), 1143 (2013)
https://doi.org/10.1103/RevModPhys.85.1143
42 J. Elgeti, R. G. Winkler, and G. Gompper, Physics of microswimmers, single particle motion and collective behavior: A review, Rep. Prog. Phys. 78(5), 056601 (2015)
https://doi.org/10.1088/0034-4885/78/5/056601
43 see: e.g., Smart Drug Delivery System, edited by A. D. Sezer, IntechOpen, 2016
44 J. Wang, Nanomachines: Fundamentals and Applications, Wiley-VCH, Weinheim, 2013
https://doi.org/10.1002/9783527651450
45 G. Volpe, I. Buttinoni, D. Vogt, H. J. Kümmerer, and C. Bechinger, Microswimmers in patterned environments, Soft Matter 7(19), 8810 (2011)
https://doi.org/10.1039/c1sm05960b
46 P. K. Ghosh, V. R. Misko, F. Marchesoni, and F. Nori, Self-propelled Janus particles in a ratchet: Numerical simulations, Phys. Rev. Lett. 110(26), 268301 (2013)
https://doi.org/10.1103/PhysRevLett.110.268301
47 S. vanTeeffelen and H. Löwen, Dynamics of a Brownian circle swimmer, Phys. Rev. E 78, 020101 (2008)
https://doi.org/10.1103/PhysRevE.78.020101
48 D. Debnath, P. K. Ghosh, Y. Li, F. Marchesoni, and B. Li, Diffusion of eccentric microswimmers, Soft Matter 12(7), 2017 (2016)
https://doi.org/10.1039/C5SM02811F
49 C. Kurzthaler, S. Leitmann, and T. Franosch, Intermediate scattering function of an anisotropic active Brownian particle, Sci. Rep. 6(1), 36702 (2016)
https://doi.org/10.1038/srep36702
50 J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, and R. Golestanian, Self-motile colloidal particles: From directed propulsion to random walk, Phys. Rev. Lett. 99(4), 048102 (2007)
https://doi.org/10.1103/PhysRevLett.99.048102
51 B. ten Hagen, S. van Teeffelen, and H. Löwen, Non- Gaussian behaviour of a self-propelled particle on a substrate, Condens. Matter Phys. 12(4), 725 (2009)
https://doi.org/10.5488/CMP.12.4.725
52 X. Ao, P. K. Ghosh, Y. Li, G. Schmid, P. Hä nggi, and F. Marchesoni, Diffusion of chiral Janus particles in a sinusoidal channel, EPL 109(1), 10003 (2015)
https://doi.org/10.1209/0295-5075/109/10003
53 X. Zheng, B. ten Hagen, A. Kaiser, M. Wu, H. Cui, Z. Silber-Li, and H. Löwen, Non-Gaussian statistics for the motion of self-propelled Janus particles: Experiment versus theory, Phys. Rev. E 88(3), 032304 (2013)
https://doi.org/10.1103/PhysRevE.88.032304
54 D. Debnath, P. K. Ghosh, V. R. Misko, Y. Li, F. Marchesoni, and F. Nori, Enhanced motility in a binary mixture of active nano/microswimmers, Nanoscale 12(17), 9717 (2020)
https://doi.org/10.1039/D0NR01765E
55 W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 2, New York: Wiley, 1991
56 L. Bosi, P. K. Ghosh, and F. Marchesoni, Analytical estimates of free Brownian diffusion times in corrugated narrow channels, J. Chem. Phys. 137(17), 174110 (2012)
https://doi.org/10.1063/1.4764297
57 T. H. Solomon and J. P. Gollub, Chaotic particle transport in time-dependent Rayleigh–Bénard convection, Phys. Rev. A 38(12), 6280 (1988)
https://doi.org/10.1103/PhysRevA.38.6280
58 T. H. Solomon and I. Mezić, Uniform resonant chaotic mixing in fluid flows, Nature 425(6956), 376 (2003)
https://doi.org/10.1038/nature01993
59 M. N. Rosenbluth, H. L. Berk, I. Doxas, and W. Horton, Effective diffusion in laminar convective flows, Phys. Fluids 30(9), 2636 (1987)
https://doi.org/10.1063/1.866107
60 W. Young, A. Pumir, and Y. Pomeau, Anomalous diffusion of tracer in convection rolls, Phys. Fluids A 1(3), 462 (1989)
https://doi.org/10.1063/1.857415
61 Y. N. Young and M. J. Shelley, Stretch-coil transition and transport of fibers in cellular flows, Phys. Rev. Lett. 99(5), 058303 (2007) H. Manikantan and D. Saintillan, Subdiffusive transport of fluctuating elastic filaments in cellular flows, Phys. Fluids 25(7), 073603 (2013)
https://doi.org/10.1063/1.4812794
62 A. Sarracino, F. Cecconi, A. Puglisi, and A. Vulpiani, Nonlinear response of inertial tracers in steady laminar flows: Differential and absolute negative mobility, Phys. Rev. Lett. 117(17), 174501 (2016)
https://doi.org/10.1103/PhysRevLett.117.174501
63 C. Torney and Z. Neufeld, Transport and aggregation of self-propelled particles in fluid flows, Phys. Rev. Lett. 99(7), 078101 (2007)
https://doi.org/10.1103/PhysRevLett.99.078101
64 N. O. Weiss, The expulsion of magnetic flux by eddies, Proc. R. Soc. Lond. A 293(1434), 310 (1966)
https://doi.org/10.1098/rspa.1966.0173
65 Y. Li, L. Li, F. Marchesoni, D. Debnath, and P. K. Ghosh, Diffusion of chiral janus particles in convection rolls., Physical Review Research 2(1), 013250 (2020)
https://doi.org/10.1103/PhysRevResearch.2.013250
66 Q. Yin, Y. Li, F. Marchesoni, T. Debnath, and P. K. Ghosh, Exit times of a Brownian particle out of a convection roll, Phys. Fluids 32(9), 092010 (2020)
https://doi.org/10.1063/5.0021932
67 J. Feng and T. G. Kurtz, Large Deviations for Stochastic processes, Mathematical Surveys and Monographs, Vol. 131, Am. Math. Society, 2006
https://doi.org/10.1090/surv/131
68 Q. Yin, Y. Li, B. Li, F. Marchesoni, S. Nayak, and P. K. Ghosh, Diffusion transients in convection rolls, J. Fluid Mech., Doi: 10.1017/jfm.2020.1127 (2021)
https://doi.org/10.1017/jfm.2020.1127
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed