Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (2): 24302   https://doi.org/10.1007/s11467-020-1043-8
  本期目录
Tasting nuclear pasta made with classical molecular dynamics simulations
Bao-An Li()
Department of Physics and Astronomy, Texas A&M University-Commerce, TX 75429-3011, USA
 全文: PDF(625 KB)  
Abstract

Nuclear clusters or voids in the inner crust of neutron stars were predicted to have various shapes collectively nicknamed nuclear pasta. The recent review in Ref. [1] by López, Dorso and Frank summarized their systematic investigations into properties especially the morphological and thermodynamical phase transitions of the nuclear pasta within a Classical Molecular Dynamics model, providing further stimuli to find more observational evidences of the predicted nuclear pasta in neutron stars.

收稿日期: 2020-12-24      出版日期: 2021-01-15
Corresponding Author(s): Bao-An Li   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(2): 24302.
Bao-An Li. Tasting nuclear pasta made with classical molecular dynamics simulations. Front. Phys. , 2021, 16(2): 24302.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-020-1043-8
https://academic.hep.com.cn/fop/CN/Y2021/V16/I2/24302
1 J. A. López, C. O. Dorso, and G. Frank, Properties of nuclear pastas, Front. Phys. 16(2), 24301 (2021)
https://doi.org/10.1007/s11467-020-1004-2
2 The National Academies Press, New Worlds, New Horizons in Astronomy and Astrophysics, 2011,
3 The National Academies Press, Nuclear Physics: Exploring the Heart of Matter, Report of the Committee on the Assessment of and Outlook for Nuclear Physics, 2012,
4 The 2015 U.S. Long Range Plan for Nuclear Science, Reaching for the Horizon,
5 The Nuclear Physics European Collaboration Committee (NuPECC) Long Range Plan, 2017, Perspectives in Nuclear Physics,
6 P. J. Siemens, Liquid–gas phase transition in nuclear matter, Nature 305(5933), 29 (1983)
https://doi.org/10.1038/305410a0
7 J. M. Lattimer and M. Prakash, Nuclear matter and its role in supernovae, neutron stars and compact object binary mergers, Phys. Rep. 333, 121 (2000)
https://doi.org/10.1016/S0370-1573(00)00019-3
8 B. A. Li, P. G. Krastev, D. H. Wen, and N. B. Zhang, Towards understanding astrophysical effects of nuclear symmetry energy, Eur. Phys. J. A 55(7), 39 (2019)
https://doi.org/10.1140/epja/i2019-12780-8
9 J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Nuclear constraints on properties of neutron star crusts, Astrophys. J. 697(2), 1549 (2009)
https://doi.org/10.1088/0004-637X/697/2/1549
10 W. G. Newton, M. Gearheart, and B. A. Li, A survey of the parameter space of the compressible liquid drop model as applied to the neutron star inner crust, Astrophys. J. Suppl. Ser. 204(1), 9 (2013)
https://doi.org/10.1088/0067-0049/204/1/9
11 C. J. Pethick and D. G. Ravenhall, Matter at large neutron excess and the physics of neutron-star crusts, Annu. Rev. Nucl. Part. Sci. 45(1), 429 (1995)
https://doi.org/10.1146/annurev.ns.45.120195.002241
12 D. G. Ravenhall, C. J. Pethick, and J. R. Wilson, Structure of matter below nuclear saturation density, Phys. Rev. Lett. 50(26), 2066 (1983)
https://doi.org/10.1103/PhysRevLett.50.2066
13 M. Hashimoto, H. Seki, and M. Yamada, Shape of nuclei in the crust of neutron star, Prog. Theor. Phys. 71(2), 320 (1984)
https://doi.org/10.1143/PTP.71.320
14 K. I. Nakazato, K. Oyamatsu, and S. Yamada, Gyroid phase in nuclear pasta, Phys. Rev. Lett. 103(13), 132501 (2009)
https://doi.org/10.1103/PhysRevLett.103.132501
15 C. O. Dorso, P. A. Giménez Molinelli, and J. A. López, Topological characterization of neutron star crusts, Phys. Rev. C 86(5), 055805 (2012)
https://doi.org/10.1103/PhysRevC.86.055805
16 D. K. Berry, M. E. Caplan, C. J. HorowitzG. Huber, and A. S. Schneider, “parking-garage” structures in nuclear astrophysics and cellular biophysics, Phys. Rev. C 94, 055801 (2016)
https://doi.org/10.1103/PhysRevC.94.055801
17 R. D. Williams and S. E. Koonin, Sub-saturation phases of nuclear matter, Nucl. Phys. A 435(3–4), 844 (1985)
https://doi.org/10.1016/0375-9474(85)90191-5
18 K. Oyamatsu, Nuclear shapes in the inner crust of a neutron star, Nucl. Phys. A 561(3), 431 (1993)
https://doi.org/10.1016/0375-9474(93)90020-X
19 C. P. Lorenz, D. G. Ravenhall, and C. J. Pethick, Neutron star crusts, Phys. Rev. Lett. 70(4), 379 (1993)
https://doi.org/10.1103/PhysRevLett.70.379
20 K. S. Cheng, C. C. Yao, and Z. G. Dai, Properties of nuclei in the inner crusts of neutron stars in the relativistic meanfield theory, Phys. Rev. C 55(4), 2092 (1997)
https://doi.org/10.1103/PhysRevC.55.2092
21 G. Watanabe, K. Iida, and K. Sato, Thermodynamic properties of nuclear “pasta” in neutron star crusts, Nucl. Phys. A 676(1–4), 445 (2000)
https://doi.org/10.1016/S0375-9474(00)00197-4
22 G. Watanabe, K. Sato, K. Yasuoka, and T. Ebisuzaki, Microscopic study of slablike and rodlike nuclei: Quantum molecular dynamics approach, Phys. Rev. C 66(1), 012801 (2002)
https://doi.org/10.1103/PhysRevC.66.012801
23 G. Watanabe and K. Iida, Electron screening in the liquidgas mixed phases of nuclear matter, Phys. Rev. C 68(4), 045801 (2003)
https://doi.org/10.1103/PhysRevC.68.045801
24 T. Maruyama, K. Niita, K. Oyamatsu, T. Maruyama, S. Chiba, and A. Iwamoto, Quantum molecular dynamics approach to the nuclear matter below the saturation density, Phys. Rev. C 57(2), 655 (1998)
https://doi.org/10.1103/PhysRevC.57.655
25 T. Kido, T. Maruyama, K. Niita, and S. Chiba, MD simulation study for nuclear matter, Nucl. Phys. A663–664, 877c (2000)
https://doi.org/10.1016/S0375-9474(99)00736-8
26 C. J. Horowitz, M. A. Pérez-Garcia, J. Carriere, D. K. Berry, and J. Piekarewicz, Nonuniform neutron-rich matter and coherent neutrino scattering, Phys. Rev. C 70(6), 065806 (2004)
https://doi.org/10.1103/PhysRevC.70.065806
27 W. G. Newton and J. R. Stone, Modeling nuclear “pasta” and the transition to uniform nuclear matter with the 3D Skyrme–Hartree–Fock method at finite temperature: Core-collapse supernovae, Phys. Rev. C 79(5), 055801 (2009)
https://doi.org/10.1103/PhysRevC.79.055801
28 S. S. Bao and H. Shen, Impact of the symmetry energy on nuclear pasta phases and crust-core transition in neutron stars, Phys. Rev. C 91(1), 015807 (2015)
https://doi.org/10.1103/PhysRevC.91.015807
29 K. Oyamatsu, K. Iida, and H. Sotani, Systematic study of pasta nuclei in neutron stars with families of the empirical nuclear equations of state, J. Phys. Conf. Ser. 1643, 012059 (2020)
https://doi.org/10.1088/1742-6596/1643/1/012059
30 C. J. Xia, T. Maruyama, N. Yasutake, T. Tatsumi, and J. X. Zhang, Nuclear pasta structures and symmetry energy, arXiv: 2012.01218
31 N. Chamel and P. Haensel, Physics of neutron star crusts, Living Rev. Relativ. 11(1), 10 (2008)
https://doi.org/10.12942/lrr-2008-10
32 W. G. Newton, J. Hooker, M. Gearheart, K. Murphy, D. H. Wen, F. Fattoyev, and B. A. Li, Constraints on the symmetry energy from observational probes of the neutron star crust, Euro. Phys. J. A 50, 41 (2014)
https://doi.org/10.1140/epja/i2014-14041-x
33 M. E. Caplan and C. J. Horowitz, Astromaterial science and nuclear pasta, Rev. Mod. Phys. 89(4), 041002 (2017)
https://doi.org/10.1103/RevModPhys.89.041002
34 M. D. Alloy and D. P. Menezes, Nuclear “pasta phase” and its consequences on neutrino opacities, Phys. Rev. C 83(3), 035803 (2011)
https://doi.org/10.1103/PhysRevC.83.035803
35 W. G. Newton, K. Murphy, J. Hooker, and B. A. Li, The cooling of the Cassiopeia A neutron star as a probe of the nuclear symmetry energy and nuclear pasta, Astrophys. J. 779(1), L4 (2013)
https://doi.org/10.1088/2041-8205/779/1/L4
36 A. Roggero, J. Margueron, L. F. Roberts, and S. Reddy, Nuclear pasta in hot dense matter and its implications for neutrino scattering, Phys. Rev. C 97(4), 045804 (2018)
https://doi.org/10.1103/PhysRevC.97.045804
37 B. Schuetrumpf, G. Martinez-Pinedo, and P. G. Reinhard, Survey of nuclear pasta in the intermediate-density regime: Structure functions for neutrino scattering, Phys. Rev. C 101(5), 055804 (2020)
https://doi.org/10.1103/PhysRevC.101.055804
38 G. Watanabe and C. J. Pethick, Superfluid density of neutrons in the inner crust of neutron stars: New life for pulsar glitch models, Phys. Rev. Lett. 119(6), 062701 (2017)
https://doi.org/10.1103/PhysRevLett.119.062701
39 J. Hooker, W. G. Newton, and B. A. Li, Efficacy of crustal superfluid neutrons in pulsar glitch models, Mon. Not. R. Astron. Soc. 449(4), 3559 (2015)
https://doi.org/10.1093/mnras/stv582
40 M. E. Caplan, A. S. Schneider, and C. J. Horowitz, Elasticity of nuclear pasta, Phys. Rev. Lett. 121(13), 132701 (2018)
https://doi.org/10.1103/PhysRevLett.121.132701
41 C. J. Pethick, Z. W. Zhang, and D. N. Kobyakov, Elastic properties of phases with nonspherical nuclei in dense matter, Phys. Rev. C 101(5), 055802 (2020)
https://doi.org/10.1103/PhysRevC.101.055802
42 B. Biswas, R. Nandi, P. Char, and S. Bose, Role of crustal physics in the tidal deformation of a neutron star, Phys. Rev. D 100(4), 044056 (2019)
https://doi.org/10.1103/PhysRevD.100.044056
43 F. Gittins, N. Andersson, and J. P. Pereira, Tidal deformations of neutron stars with elastic crusts, Phys. Rev. D 101(10), 103025 (2020)
https://doi.org/10.1103/PhysRevD.101.103025
44 M. Gearheart, W. G. Newton, J. Hooker, and B. A. Li, Upper limits on the observational effects of nuclear pasta in neutron stars, Mon. Not. R. Astron. Soc. 418(4), 2343 (2011)
https://doi.org/10.1111/j.1365-2966.2011.19628.x
45 H. Sotani, K. Iida, and K. Oyamatsu, Astrophysical implications of double-layer torsional oscillations in a neutron star crust as a lasagna sandwich, Mon. Not. R. Astron. Soc. 489, 3022 (2019)
https://doi.org/10.1093/mnras/stz2385
46 D. H. Wen, W. G. Newton, and B. A. Li, Sensitivity of the neutron star r-mode instability window to the density dependence of the nuclear symmetry energy, Phys. Rev. C 85(2), 025801 (2012)
https://doi.org/10.1103/PhysRevC.85.025801
47 I. Vidaña, Nuclear symmetry energy and the r-mode instability of neutron stars, Phys. Rev. C 85(4), 045808 (2012)
https://doi.org/10.1103/PhysRevC.85.045808
48 R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, et al., GW190814: Gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object, Astrophys. J. 896(2), L44 (2020)
49 E. R. Most, L. J. Papenfort, L. R. Weih, and L. Rezzolla, A lower bound on the maximum mass if the secondary in GW190814 was once a rapidly spinning neutron star, Mon. Not. R. Astron. Soc. Lett. 499(1), L82 (2020)
https://doi.org/10.1093/mnrasl/slaa168
50 N. B. Zhang and B. A. Li, GW190814’s secondary component with mass 2.50–2.67 M⊙ as a superfast pulsar, Astrophys. J. 902(1), 38 (2020)
https://doi.org/10.3847/1538-4357/abb470
51 X. Zhou, A. Li, and B. A. Li, R-mode stability of GW190814’s secondary component as a supermassive and superfast pulsar, arXiv: 2011.11934
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed