Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (5): 53301   https://doi.org/10.1007/s11467-021-1048-y
  本期目录
Designing nonlinear thermal devices and metamaterials under the Fourier law: A route to nonlinear thermotics
Gao-Le Dai()
School of Sciences, Nantong University, Nantong 226019, China
 全文: PDF(3191 KB)  
Abstract

Nonlinear heat transfer can be exploited to reveal novel transport phenomena and thus enhance people’s ability to manipulate heat flux at will. However, there has not been a mature discipline called nonlinear thermotics like its counterpart in optics or acoustics to make a systematic summary of relevant researches. In the current review, we focus on recent progress in an important part of nonlinear heat transfer, i.e., tailoring nonlinear thermal devices and metamaterials under the Fourier law, especially with temperature-dependent thermal conductivities. We will present the basic designing techniques including solving the equation directly and the transformation theory. Tuning nonlinearity coming from multi-physical effects, and how to calculate effective properties of nonlinear conductive composites using the effective medium theory are also included. Based on these theories, researchers have successfully designed various functional materials and devices such as the thermal diodes, thermal transistors, thermal memory elements, energy-free thermostats, and intelligent thermal materials, and some of them have also been realized in experiments. Further, these phenomenological works can provide a feasible route for the development of nonlinear thermotics.

Key wordsnonlinear thermotics    thermal metamaterials    thermal conduction    thermal radiation    thermal convection    thermo-mechanical effects    effective medium theory
收稿日期: 2020-12-18      出版日期: 2021-04-26
Corresponding Author(s): Gao-Le Dai   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(5): 53301.
Gao-Le Dai. Designing nonlinear thermal devices and metamaterials under the Fourier law: A route to nonlinear thermotics. Front. Phys. , 2021, 16(5): 53301.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1048-y
https://academic.hep.com.cn/fop/CN/Y2021/V16/I5/53301
1 S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 2nd Ed., CRC Press, Boca Raton, 2018
2 W. A. Strauss, Partial Differential Equations: An introduction, 2nd Ed., Wiley, Hoboken, 2008
3 N. Bloembergen, Nonlinear Optics, Benjamin, New York, 1964
4 N. M. Krylov and N. N. Bogolyubov, Introduction to Non-Linear Mechanics, Princeton University Press, Princeton, 1947
5 R. T. Beyer, Nonlinear Acoustics, Naval Ship Systems Command, Washington, D.C., 1974
https://doi.org/10.21236/ADA098556
6 D. L. Pulfrey, Understanding Modern Transistors and Diodes, Cambridge University Press, Cambridge, 2010
https://doi.org/10.1017/CBO9780511840685
7 L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, 3rd Ed., Butterworth–Heinemann, Oxford, 1980
https://doi.org/10.1016/B978-0-08-057046-4.50008-7
8 L. P. Pitaevskii and E. M. Lifshitz, Physical Kinetics, Pergamon Press, Oxford, 1981
9 D. W. Snoke, Solid State Physics: Essential Concepts, 2nd Ed., Cambridge University Press, Cambridge, 2020
https://doi.org/10.1017/9781108123815
10 G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons, Oxford University Press, New York, 2005
11 S. Lepri, R. Livi, and A. Politi, Thermal conduction in classical low-dimensional lattices, Phys. Rep. 377(1), 1 (2003)
https://doi.org/10.1016/S0370-1573(02)00558-6
12 N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Phononics: Manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys. 84(3), 1045 (2012)
https://doi.org/10.1103/RevModPhys.84.1045
13 X. Gu, Y. Wei, X. Yin, B. Li, and R. Yang, Colloquium: Phononic thermal properties of two-dimensional materials, Rev. Mod. Phys. 90(4), 041002 (2018)
https://doi.org/10.1103/RevModPhys.90.041002
14 X. K. Chen and K. Q. Chen, Thermal transport of carbon nanomaterials, J. Phys.: Condens. Matter 32(15), 153002 (2020)
https://doi.org/10.1088/1361-648X/ab5e57
15 Z. Zhang, Y. Ouyang, Y. Cheng, J. Chen, N. Li, and G. Zhang, Size-dependent phononic thermal transport in low-dimensional nanomaterials, Phys. Rep. 860, 1 (2020)
https://doi.org/10.1016/j.physrep.2020.03.001
16 J. Ford, The Fermi–Pasta–Ulam problem: Paradox turns discovery, Phys. Rep. 213(5), 271 (1992)
https://doi.org/10.1016/0370-1573(92)90116-H
17 O. M. Braun and Y. S. Kivshar, Nonlinear dynamics of the Frenkel–Kontorova model, Phys. Rep. 306(1–2), 1 (1998)
https://doi.org/10.1016/S0370-1573(98)00029-5
18 D. D. Joseph and L. Preziosi, Heat waves, Rev. Mod. Phys. 61(1), 41 (1989)
https://doi.org/10.1103/RevModPhys.61.41
19 B. Straughan, Heat Waves, Springer, New York, 2011
https://doi.org/10.1007/978-1-4614-0493-4
20 L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd Ed., Butterworth–Heinemann, Oxford, 1987
21 S. Buckley, Thermic diode solar panels for space heating, Sol. Energy 20(6), 495 (1978)
https://doi.org/10.1016/0038-092X(78)90066-X
22 C. Starr, The copper oxide rectifier, Physics 7(1), 15 (1936)
https://doi.org/10.1063/1.1745338
23 N. A. Roberts and D. G. Walker, A review of thermal rectification observations and models in solid materials, Int. J. Therm. Sci. 50(5), 648 (2011)
https://doi.org/10.1016/j.ijthermalsci.2010.12.004
24 M. Terraneo, M. Peyrard, and G. Casati, Controlling the energy flow in nonlinear lattices: A model for a thermal rectifier, Phys. Rev. Lett. 88(9), 094302 (2002)
https://doi.org/10.1103/PhysRevLett.88.094302
25 B. Li, L. Wang, and G. Casati, Thermal diode: Rectification of heat flux, Phys. Rev. Lett. 93(18), 184301 (2004)
https://doi.org/10.1103/PhysRevLett.93.184301
26 B. Li, J. Lan, and L. Wang, Interface thermal resistance between dissimilar anharmonic lattices, Phys. Rev. Lett. 95(10), 104302 (2005)
https://doi.org/10.1103/PhysRevLett.95.104302
27 B. Li, L. Wang, and G. Casati, Negative differential thermal resistance and thermal transistor, Appl. Phys. Lett. 88(14), 143501 (2006)
https://doi.org/10.1063/1.2191730
28 L. Wang and B. Li, Thermal logic gates: Computation with phonons, Phys. Rev. Lett. 99(17), 177208 (2007)
https://doi.org/10.1103/PhysRevLett.99.177208
29 L. Wang and B. Li, Thermal memory: A storage of phononic information, Phys. Rev. Lett. 101(26), 267203 (2008)
https://doi.org/10.1103/PhysRevLett.101.267203
30 N. Li, P. Hänggi, and B. Li, Ratcheting heat flux against a thermal bias, EPL 84(4), 40009 (2008)
https://doi.org/10.1209/0295-5075/84/40009
31 Y. Ming, H. M. Li, and Z. J. Ding, Thermal rectification and negative differential thermal conductance in harmonic chains with nonlinear system-bath coupling, Phys. Rev. E 93(3), 032127 (2016)
https://doi.org/10.1103/PhysRevE.93.032127
32 Z. Liu, X. Wu, H. Yang, N. Gupte, and B. Li, Heat flux distribution and rectification of complex networks, New J. Phys. 12(2), 023016 (2010)
https://doi.org/10.1088/1367-2630/12/2/023016
33 K. Xiong, J. Zhou, M. Tang, C. Zeng, and Z. Liu, Control of thermal conduction and rectification in a model of complex networks with two asymmetric parts, Phys. Rev. E 98(6), 062144 (2018)
https://doi.org/10.1103/PhysRevE.98.062144
34 C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Solid-state thermal rectifier, Science 314(5802), 1121 (2006)
https://doi.org/10.1126/science.1132898
35 D. Segal and A. Nitzan, Spin-boson thermal rectifier, Phys. Rev. Lett. 94(3), 034301 (2005)
https://doi.org/10.1103/PhysRevLett.94.034301
36 D. Segal, Single mode heat rectifier: Controlling energy flow between electronic conductors, Phys. Rev. Lett. 100(10), 105901 (2008)
https://doi.org/10.1103/PhysRevLett.100.105901
37 L. A. Wu and D. Segal, Sufficient conditions for thermal rectification in hybrid quantum structures, Phys. Rev. Lett. 102(9), 095503 (2009)
https://doi.org/10.1103/PhysRevLett.102.095503
38 D. Sánchez and R. López, Nonlinear phenomena in quantum thermoelectrics and heat, C. R. Phys. 17(10), 1060 (2016)
https://doi.org/10.1016/j.crhy.2016.08.005
39 R. Scheibner, M. König, D. Reuter, A. D. Wieck, C. Gould, H. Buhmann, and L. W. Molenkamp, Quantum dot as thermal rectifier, New J. Phys. 10(8), 083016 (2008)
https://doi.org/10.1088/1367-2630/10/8/083016
40 J. H. Jiang, M. Kulkarni, D. Segal, and Y. Imry, Phonon thermoelectric transistors and rectifiers, Phys. Rev. B 92(4), 045309 (2015)
https://doi.org/10.1103/PhysRevB.92.045309
41 D. Segal and A. Nitzan, Heat rectification in molecular junctions, J. Chem. Phys. 122(19), 194704 (2005)
https://doi.org/10.1063/1.1900063
42 D. Segal, Heat flow in nonlinear molecular junctions: Master equation analysis, Phys. Rev. B 73(20), 205415 (2006)
https://doi.org/10.1103/PhysRevB.73.205415
43 G. T. Craven, D. He, and A. Nitzan, Electrontransferinduced thermal and thermoelectric rectification, Phys. Rev. Lett. 121(24), 247704 (2018)
https://doi.org/10.1103/PhysRevLett.121.247704
44 J. Ren, P. Hänggi, and B. Li, Berry-phase-induced heat pumping and its impact on the fluctuation theorem, Phys. Rev. Lett. 104(17), 170601 (2010)
https://doi.org/10.1103/PhysRevLett.104.170601
45 A. Fornieri, M. J. Martínez-Pérez, and F. Giazotto, A normal metal tunnel-junction heat diode, Appl. Phys. Lett. 104(18), 183108 (2014)
https://doi.org/10.1063/1.4875917
46 M. J. Martínez-Pérez, A. Fornieri, and F. Giazotto, Rectification of electronic heat current by a hybrid thermal diode, Nat. Nanotechnol. 10(4), 303 (2015)
https://doi.org/10.1038/nnano.2015.11
47 A. Fornieri and F. Giazotto, Towards phase-coherent caloritronics in superconducting circuits, Nat. Nanotechnol. 12(10), 944 (2017)
https://doi.org/10.1038/nnano.2017.204
48 M. J. Martínez-Pérez and F. Giazotto, Efficient phasetunable Josephson thermal rectifier, Appl. Phys. Lett. 102(18), 182602 (2013)
https://doi.org/10.1063/1.4804550
49 L. Bours, B. Sothmann, M. Carrega, E. Strambini, A. Braggio, E. M. Hankiewicz, L. W. Molenkamp, and F. Giazotto, Phase-tunable thermal rectification in the topological SQUIPT, Phys. Rev. Appl. 11(4), 044073 (2019)
https://doi.org/10.1103/PhysRevApplied.11.044073
50 C. Guarcello, P. Solinas, A. Braggio, M. Di Ventra, and F. Giazotto, Josephson thermal memory, Phys. Rev. Appl. 9(1), 014021 (2018)
https://doi.org/10.1103/PhysRevApplied.9.014021
51 C. Guarcello, P. Solinas, A. Braggio, and F. Giazotto, Solitonic Josephson thermal transport, Phys. Rev. Appl. 9(3), 034014 (2018)
https://doi.org/10.1103/PhysRevApplied.9.034014
52 M. Maldovan, Sound and heat revolutions in phononics, Nature 503(7475), 209 (2013)
https://doi.org/10.1038/nature12608
53 Y. Li, W. Li, T. Han, X. Zheng, J. Li, B. Li, S. Fan, and C. W. Qiu, Transforming heat transfer with thermal metamaterials and devices, arXiv: 2008.07964v1 (2020)
54 J. Wang, G. Dai, and J. Huang, Thermal metamaterial: Fundamental, application, and outlook, iScience 23(10), 101637 (2020)
https://doi.org/10.1016/j.isci.2020.101637
55 J. C. Kim, Z. Ren, A. Yuksel, E. M. Dede, P. R. Bandaru, D. Oh, and J. Lee, Recent advances in thermal metamaterials and their future applications for electronics packaging, J. Electron. Packag. 143(1), 010801 (2021)
https://doi.org/10.1115/1.4047414
56 N. I. Zhuludev and Y. S. Kivshar, From metamaterials to metadevices, Nat. Mater. 11(11), 917 (2012)
https://doi.org/10.1038/nmat3431
57 S. Narayana and Y. Sato, Heat flux manipulation with engineered thermal materials, Phys. Rev. Lett. 108(21), 214303 (2012)
https://doi.org/10.1103/PhysRevLett.108.214303
58 C. Z. Fan, Y. Gao, and J. P. Huang, Shaped graded materials with an apparent negative thermal conductivity, Appl. Phys. Lett. 92(25), 251907 (2008)
https://doi.org/10.1063/1.2951600
59 Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes, Phys. Rev. Lett. 115(19), 195503 (2015)
https://doi.org/10.1103/PhysRevLett.115.195503
60 G. S. He, Nonlinear Optics and Photonics, Oxford University Press, Oxford, 2015
61 A. Alù and N. Engheta, Achieving transparency with plasmonic and metamaterial coatings, Phys. Rev. E 72(1), 016623 (2005)
https://doi.org/10.1103/PhysRevE.72.016623
62 H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, Ultrathin three-dimensional thermal cloak, Phys. Rev. Lett. 112(5), 054301 (2014)
https://doi.org/10.1103/PhysRevLett.112.054301
63 T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, Experimental demonstration of a bilayer thermal cloak, Phys. Rev. Lett. 112(5), 054302 (2014)
https://doi.org/10.1103/PhysRevLett.112.054302
64 T. Han, X. Bai, J. T. L. Thong, B. Li, and C. W. Qiu, Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterials, Adv. Mater. 26(11), 1731 (2014)
https://doi.org/10.1002/adma.201304448
65 T. Han, P. Yang, Y. Li, D. Lei, B. Li, K. Hippalgaonkar, and C. W. Qiu, Full-parameter omnidirectional thermal metadevices of anisotropic geometry, Adv. Mater. 30(49), 1804019 (2018)
https://doi.org/10.1002/adma.201804019
66 C. Marucha, J. Mucha, and J. Rafałowicz, Heat flow rectification in inhomogeneous GaAs, Phys. Status Solidi 31(1), 269 (1975)
https://doi.org/10.1002/pssa.2210310130
67 A. Jeżowski and J. Rafałowicz, Heat flow asymmetry on a junction of quartz with graphite, Phys. Status Solidi 47(1), 229 (1978)
https://doi.org/10.1002/pssa.2210470126
68 B. Hu, D. He, L. Yang, and Y. Zhang, Thermal rectifying effect in macroscopic size, Phys. Rev. E 74(6), 060201 (2006)
https://doi.org/10.1103/PhysRevE.74.060201
69 M. Peyrard, The design of a thermal rectifier, EPL 76(1), 49 (2006)
https://doi.org/10.1209/epl/i2006-10223-5
70 D. B. Go and M. Sen, On the condition for thermal rectification using bulk materials, J. Heat Transfer 132(12), 124502 (2010)
https://doi.org/10.1115/1.4002286
71 Y. Li, J. X. Li, M. H. Qi, C.-W. Qiu, and H. S. Chen, Diffusive nonreciprocity and thermal diode, Phys. Rev. B 103, 014307 (2021)
https://doi.org/10.1103/PhysRevB.103.014307
72 C. Dames, Solid-state thermal rectification with existing bulk materials, J. Heat Transfer 131(6), 061301 (2009)
https://doi.org/10.1115/1.3089552
73 Y. Yang, H. Chen, H. Wang, N. Li, and L. Zhang, Optimal thermal rectification of heterojunctions under Fourier law, Phys. Rev. E 98(4), 042131 (2018)
https://doi.org/10.1103/PhysRevE.98.042131
74 W. Kobayashi, Thermal-rectification coefficients in solidstate thermal rectifiers, Phys. Rev. E 102(3), 032142 (2020)
https://doi.org/10.1103/PhysRevE.102.032142
75 W. Kobayashi, Y. Teraoka, and I. Terasaki, An oxide thermal rectifier, Appl. Phys. Lett. 95(17), 171905 (2009)
https://doi.org/10.1063/1.3253712
76 D. Sawaki, W. Kobayashi, Y. Moritomo, and I. Terasaki, Thermal rectification in bulk materials with asymmetric shape, Appl. Phys. Lett. 98(8), 081915 (2011)
https://doi.org/10.1063/1.3559615
77 T. Takeuchi, H. Goto, R. Nakayama, Y. Terazawa, K. Ogawa, A. Yamamoto, T. Itoh, and M. Mikami, Improvement in rectification ratio of an Al-based bulk thermal rectifier working at high temperatures, J. Appl. Phys. 111(9), 093517 (2012)
https://doi.org/10.1063/1.4712420
78 R. Nakayama and T. Takeuchi, Thermal rectification in bulk material through unusual behavior of electron thermal conductivity of Al–Cu–Fe icosahedral quasicrystal, J. Electron. Mater. 44(1), 356 (2015)
https://doi.org/10.1007/s11664-014-3204-4
79 T. Takeuchi, Very large thermal rectification in bulk composites consisting partly of icosahedral quasicrystals, Sci. Technol. Adv. Mater. 15(6), 064801 (2014)
https://doi.org/10.1088/1468-6996/15/6/064801
80 K. Yuan, J. Shi, W. Aftab, M. Qin, A. Usman, F. Zhou, Y. Lv, S. Gao, and R. Zou, Engineering the thermal conductivity of functional phase-change materials for heat energy conversion, storage, and utilization, Adv. Funct. Mater. 30(8), 1904228 (2020)
https://doi.org/10.1002/adfm.201904228
81 X. Chen, Z. Tang, H. Gao, S. Chen, and G. Wang, Phase change materials for electro-thermal conversion and storage: From fundamental understanding to engineering design, iScience 23(6), 101208 (2020)
https://doi.org/10.1016/j.isci.2020.101208
82 Y. Zhou, S. Wu, Y. Ma, H. Zhang, X. Zeng, F. Wu, F. Liu, J. E. Ryu, and Z. Guo, Recent advances in organic/composite phase change materials for energy storage, ES Energy Environ. 9, 28 (2020)
83 W. Kobayashi, D. Sawaki, T. Omura, T. Katsufuji, Y. Moritomo, and I. Terasaki, Thermal rectification in the vicinity of a structural phase transition, Appl. Phys. Express 5(2), 027302 (2012)
https://doi.org/10.1143/APEX.5.027302
84 A. L. Cottrill and M. S. Strano, Analysis of thermal diodes enabled by junctions of phase change materials, Adv. Energy Mater. 5(23), 1500921 (2015)
https://doi.org/10.1002/aenm.201500921
85 J. Ordonez-Miranda, J. M. Hill, K. Joulain, Y. Ezzahri, and J. Drevillon, Conductive thermal diode based on the thermal hysteresis of VO2 and nitinol, J. Appl. Phys. 123(8), 085102 (2018)
https://doi.org/10.1063/1.5019854
86 K. I. Garcia-Garcia and J. Alvarez-Quintana, Thermal rectification assisted by lattice transitions, Int. J. Therm. Sci. 81, 76 (2014)
https://doi.org/10.1016/j.ijthermalsci.2014.03.004
87 V. Birman, Review of mechanics of shape memory alloy structures, Appl. Mech. Rev. 50(11), 629 (1997)
https://doi.org/10.1115/1.3101674
88 E. Pallecchi, Z. Chen, G. E. Fernandes, Y. Wan, J. H. Kim, and J. Xu, A thermal diode and novel implementation in a phase-change material, Mater. Horiz. 2(1), 125 (2015)
https://doi.org/10.1039/C4MH00193A
89 S. Wang, A. L. Cottrill, Y. Kunai, A. R. Toland, P. Liu, W. J. Wang, and M. S. Strano, Microscale solidstate thermal diodes enabling ambient temperature thermal circuits for energy applications, Phys. Chem. Chem. Phys. 19(20), 13172 (2017)
https://doi.org/10.1039/C7CP02445B
90 J. A. Leon-Gil, J. J. Martinez-Flores, and J. Alvarez-Quintana, A hybrid thermal diode based on phase transition materials, J. Mater. Sci. 54(4), 3211 (2019)
https://doi.org/10.1007/s10853-018-3059-9
91 H. Kang, F. Yang, and J. J. Urban, Thermal rectification via heterojunctions of solid-state phase-change materials, Phys. Rev. Appl. 10(2), 024034 (2018)
https://doi.org/10.1103/PhysRevApplied.10.024034
92 A. L. Cottrill, S. Wang, A. T. Liu, W. J. Wang, and M. S. Strano, Dual phase change thermal diodes for enhanced rectification ratios: Theory and experiment, Adv. Energy Mater. 8(11), 1702692 (2018)
https://doi.org/10.1002/aenm.201702692
93 S. O. Kasali, J. Ordonez-Miranda, and K. Joulain, Conductive thermal diode based on two phase-change materials, Int. J. Therm. Sci. 153, 106393 (2020)
https://doi.org/10.1016/j.ijthermalsci.2020.106393
94 C. Y. Tso and C. Y. H. Chao, Solid-state thermal diode with shape memory alloys, Int. J. Heat Mass Transfer 93, 605 (2016)
https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.045
95 M. Hao, J. Li, S. Park, S. Moura, and C. Dames, Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy, Nat. Energy 3(10), 899 (2018)
https://doi.org/10.1038/s41560-018-0243-8
96 D. W. Hengeveld, M. M. Mathison, J. E. Braun, E. A. Groll, and A. D. Williams, Review of modern spacecraft thermal control technologies, HVAC & R Res. 16(2), 189 (2010)
https://doi.org/10.1080/10789669.2010.10390900
97 L. Guo, X. Zhang, Y. Huang, R. Hu, and C. Liu, Thermal characterization of a new differential thermal expansion heat switch for space optical remote sensor, Appl. Therm. Eng. 113, 1242 (2017)
https://doi.org/10.1016/j.applthermaleng.2016.11.102
98 P. R. Gaddam, S. T. Huxtable, and W. A. Ducker, A liquid-state thermal diode, Int. J. Heat Mass Transfer 106, 741 (2017)
https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.071
99 H. Wang, S. Hu, K. Takahashi, X. Zhang, H. Takamatsu, and J. Chen, Experimental study of thermal rectification in suspended monolayer graphene, Nat. Commun. 8(1), 15843 (2017)
https://doi.org/10.1038/ncomms15843
100 M. Kasprzak, M. Sledzinska, K. Zaleski, I. Iatsunskyi, F. Alzina, S. Volz, C. M. Sotomayor Torres, and B. Graczykowski, High-temperature silicon thermal diode and switch, Nano Energy 78, 105261 (2020)
https://doi.org/10.1016/j.nanoen.2020.105261
101 T. Zhang and T. Luo, Giant thermal rectification from polyethylene nanofiber thermal diodes, Small 11(36), 4657 (2015)
https://doi.org/10.1002/smll.201501127
102 J. Hu, X. Ruan, and Y. P. Chen, Thermal conductivity and thermal rectification in graphene nanoribbons: A molecular dynamics study, Nano Lett. 9(7), 2730 (2009)
https://doi.org/10.1021/nl901231s
103 N. Yang, N. Li, L. Wang, and B. Li, Thermal rectification and negative differential thermal resistance in lattices with mass gradient, Phys. Rev. B 76, 020301(R) (2007)
https://doi.org/10.1103/PhysRevB.76.020301
104 N. Yang, G. Zhang, and B. Li, Carbon nanocone: A promising thermal rectifier, Appl. Phys. Lett. 93(24), 243111 (2008)
https://doi.org/10.1063/1.3049603
105 G. Wu and B. Li, Thermal rectifiers from deformed carbon nanohorns, J. Phys. Condens. Matter 20(17), 175211 (2008)
https://doi.org/10.1088/0953-8984/20/17/175211
106 N. Yang, G. Zhang, and B. Li, Thermal rectification in asymmetric graphene ribbons, Appl. Phys. Lett. 95(3), 033107 (2009)
https://doi.org/10.1063/1.3183587
107 M. Criado-Sancho, F. X. Alvarez, and D. Jou, Thermal rectification in inhomogeneous nanoporous Si devices, J. Appl. Phys. 114(5), 053512 (2013)
https://doi.org/10.1063/1.4816685
108 M. G. Naso, E. Vuk, and F. Zullo, On the optimization of heat rectification in graded materials, Int. J. Heat Mass Transfer 143, 118520 (2019)
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118520
109 Y. Y. Liu, W. X. Zhou, L. M. Tang, and K. Q. Chen, An important mechanism for thermal rectification in graded nanowires, Appl. Phys. Lett. 105(20), 203111 (2014)
https://doi.org/10.1063/1.4902427
110 X. K. Chen, J. Liu, Z. X. Xie, Y. Zhang, Y. X. Deng, and K. Q. Chen, A local resonance mechanism for thermal rectification in pristine/branched graphene nanoribbon junctions, Appl. Phys. Lett. 113(12), 121906 (2018)
https://doi.org/10.1063/1.5053233
111 Y. Wang, S. Chen, and X. Ruan, Tunable thermal rectification in graphene nanoribbons through defect engineering: A molecular dynamics study, Appl. Phys. Lett. 100(16), 163101 (2012)
https://doi.org/10.1063/1.3703756
112 C. Zhang, M. An, Z. Guo, and S. Chen, Perturbation theory of thermal rectification, Phys. Rev. E 102(4), 042106 (2020)
https://doi.org/10.1103/PhysRevE.102.042106
113 D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, What is — and what is not — an optical isolator, Nat. Photonics 7(8), 579 (2013)
https://doi.org/10.1038/nphoton.2013.185
114 V. S. Asadchy, M. S. Mirmoosa, A. Díaz-Rubio, S. Fan, and S. A. Tretyakov, Tutorial on electromagnetic nonreciprocity and its origins, Proc. IEEE 108(10), 1684 (2020)
https://doi.org/10.1109/JPROC.2020.3012381
115 C. Caloz, A. Alù, S. Tretyakov, D. Sounas, K. Achouri, and Z. L. Deck-Léger, Electromagnetic nonreciprocity, Phys. Rev. Appl. 10(4), 047001 (2018)
https://doi.org/10.1103/PhysRevApplied.10.047001
116 H. Nassar, B. Yousefzadeh, R. Fleury, M. Ruzzene, A. Alù, C. Daraio, A. N. Norris, G. Huang, and M. R. Haberman, Nonreciprocity in acoustic and elastic materials, Nat. Rev. Mater. 5(9), 667 (2020)
https://doi.org/10.1038/s41578-020-0206-0
117 B. Liang, B. Yuan, and J. C. Cheng, Acoustic diode: Rectification of acoustic energy flux in one-dimensional systems, Phys. Rev. Lett. 103(10), 104301 (2009)
https://doi.org/10.1103/PhysRevLett.103.104301
118 B. Liang, X. S. Guo, J. Tu, D. Zhang, and J. C. Cheng, An acoustic rectifier, Nat. Mater. 9(12), 989 (2010)
https://doi.org/10.1038/nmat2881
119 H. Masoud, and H. A. Stone, The reciprocal theorem in fluid dynamics and transport phenomena, J. Fluid Mech. 879, P1 (2019)
https://doi.org/10.1017/jfm.2019.553
120 X. Xu and T. Qian, Generalized Lorentz reciprocal theorem in complex fluids and in non-isothermal systems, J. Phys.: Condens. Matter 31(47), 475101 (2019)
https://doi.org/10.1088/1361-648X/ab3898
121 G. Wu, Y. Long, and J. Ren, Asymmetric nonlinear system is not sufficient for a nonreciprocal wave diode, Phys. Rev. B 97(20), 205423 (2018)
https://doi.org/10.1103/PhysRevB.97.205423
122 D. He, S. Buyukdagli, and B. Hu, Origin of negative differential thermal resistance in a chain of two weakly coupled nonlinear lattices, Phys. Rev. B 80(10), 104302 (2009)
https://doi.org/10.1103/PhysRevB.80.104302
123 J. Hu, Y. Wang, A. Vallabhaneni, X. Ruan, and Y. P. Chen, Nonlinear thermal transport and negative differential thermal conductance in graphene nanoribbons, Appl. Phys. Lett. 99(11), 113101 (2011)
https://doi.org/10.1063/1.3630026
124 X. K. Chen, J. Liu, Z. H. Peng, D. Du, and K. Q. Chen, A wave-dominated heat transport mechanism for negative differential thermal resistance in graphene/hexagonal boron nitride heterostructures, Appl. Phys. Lett. 110(9), 091907 (2017)
https://doi.org/10.1063/1.4977776
125 A. Fornieri, G. Timossi, R. Bosisio, P. Solinas, and F. Giazotto, Negative differential thermal conductance and heat amplification in superconducting hybrid devices, Phys. Rev. B 93(13), 134508 (2016)
https://doi.org/10.1103/PhysRevB.93.134508
126 H. Liu, C. Wang, L. Q. Wang, and J. Ren, Strong systembath coupling induces negative differential thermal conductance and heat amplification in nonequilibrium twoqubit systems, Phys. Rev. E 99(3), 032114 (2019)
https://doi.org/10.1103/PhysRevE.99.032114
127 Y. Yang, D. Ma, Y. Zhao, and L. Zhang, Negative differential thermal resistance effect in a macroscopic homojunction, J. Appl. Phys. 127(19), 195301 (2020)
https://doi.org/10.1063/5.0004284
128 G. L. Pollack, Kapitza resistance, Rev. Mod. Phys. 41(1), 48 (1969)
https://doi.org/10.1103/RevModPhys.41.48
129 E. T. Swartz and R. O. Pohl, Thermal boundary resistance, Rev. Mod. Phys. 61(3), 605 (1989)
https://doi.org/10.1103/RevModPhys.61.605
130 G. Bertotti, Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers, Academic Press, San Diego, 1998
131 H. M. Gibbs, Optical Bistability: Controlling Light with Light, Academic Press, Orlando, 1985
https://doi.org/10.1016/B978-0-12-281940-7.50010-X
132 O. H. Schmitt, A thermionic trigger, J. Sci. Instrum. 15(1), 24 (1938)
https://doi.org/10.1088/0950-7671/15/1/305
133 N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82(2), 1539 (2010)
https://doi.org/10.1103/RevModPhys.82.1539
134 C. X. Liu, S. C. Zhang, and X. L. Qi, The quantum anomalous Hall effect, arXiv: 1508.07106 (2015)
135 D. Dubnau and R. Losick, Bistability in bacteria, Mol. Microbiol. 61(3), 564 (2006)
https://doi.org/10.1111/j.1365-2958.2006.05249.x
136 J. W. Veening, W. K. Smits, and O. P. Kuipers, Bistability, epigenetics, and bet-hedging in bacteria, Annu. Rev. Microbiol. 62(1), 193 (2008)
https://doi.org/10.1146/annurev.micro.62.081307.163002
137 R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. Thong, An electrically tuned solid-state thermal memory based on metal-insulator transition of single-crystalline VO2 nanobeams, Adv. Funct. Mater. 21(9), 1602 (2011)
https://doi.org/10.1002/adfm.201002436
138 J. Wang, G. Dai, F. Yang, and J. Huang, Designing bistability or multistability in macroscopic diffusive systems, Phys. Rev. E 101(2), 022119 (2020)
https://doi.org/10.1103/PhysRevE.101.022119
139 L. Chua, Memristor — The missing circuit element, IEEE Trans. Circuit Theory 18(5), 507 (1971)
https://doi.org/10.1109/TCT.1971.1083337
140 D. S. Shang, Y. S. Chai, Z. X. Cao, J. Lu, and Y. Sun, Toward the complete relational graph of fundamental circuit elements, Chin. Phys. B 24(6), 068402 (2015)
https://doi.org/10.1088/1674-1056/24/6/068402
141 D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, The missing memristor found, Nature 453(7191), 80 (2008)
https://doi.org/10.1038/nature06932
142 M. Di Ventra, Y. V. Pershin, and L. O. Chua, Circuit elements with memory: Memristors, memcapacitors, and meminductors, Proc. IEEE 97(10), 1717 (2009)
https://doi.org/10.1109/JPROC.2009.2021077
143 Y. V. Pershin and M. Di Ventra, Memory effects in complex materials and nanoscale systems, Adv. Phys. 60(2), 145 (2011)
https://doi.org/10.1080/00018732.2010.544961
144 Y. V. Pershin, S. La Fontaine, and M. Di Ventra, Memristive model of amoeba learning, Phys. Rev. E 80(2), 021926 (2009)
https://doi.org/10.1103/PhysRevE.80.021926
145 V. K. Sangwan, H. S. Lee, H. Bergeron, I. Balla, M. E. Beck, K. S. Chen, and M. C. Hersam, Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide, Nature 554(7693), 500 (2018)
https://doi.org/10.1038/nature25747
146 P. Ben-Abdallah, Thermal memristor and neuromorphic networks for manipulating heat flow, AIP Adv. 7(6), 065002 (2017)
https://doi.org/10.1063/1.4985055
147 F. Yang, M. P. Gordon, and J. J. Urban, Theoretical framework of the thermal memristor via a solidstate phase change material, J. Appl. Phys. 125(2), 025109 (2019)
https://doi.org/10.1063/1.5063737
148 K. Liu, S. Lee, S. Yang, O. Delaire, and J. Wu, Recent progresses on physics and applications of vanadium dioxide, Mater. Today 21(8), 875 (2018)
https://doi.org/10.1016/j.mattod.2018.03.029
149 T. Driscoll, H. T. Kim, B. G. Chae, M. Di Ventra, and D. N. Basov, Phase-transition driven memristive system, Appl. Phys. Lett. 95(4), 043503 (2009)
https://doi.org/10.1063/1.3187531
150 T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, Memory metamaterials, Science 325(5947), 1518 (2009)
https://doi.org/10.1126/science.1176580
151 X. Shen, Y. Li, C. Jiang, and J. Huang, Temperature trapping: Energy-free maintenance of constant temperatures as ambient temperature gradients change, Phys. Rev. Lett. 117(5), 055501 (2016)
https://doi.org/10.1103/PhysRevLett.117.055501
152 J. Wang, J. Shang, and J. Huang, Negative energy consumption of thermostats at ambient temperature: Electricity generation with zero energy maintenance, Phys. Rev. Appl. 11(2), 024053 (2019)
https://doi.org/10.1103/PhysRevApplied.11.024053
153 J. B. Pendry, D. Schurig, and D. R. Smith, Controlling electromagnetic fields, Science 312(5781), 1780 (2006)
https://doi.org/10.1126/science.1125907
154 U. Leonhardt, Controlling electromagnetic fields, Science 312(5781), 1777 (2006)
https://doi.org/10.1126/science.1126493
155 U. Leonhardt and T. G. Philbin, General relativity in electrical engineering, New J. Phys. 8(10), 247 (2006)
https://doi.org/10.1088/1367-2630/8/10/247
156 H. Chen, C. T. Chan, and P. Sheng, Transformation optics and metamaterials, Nat. Mater. 9(5), 387 (2010)
https://doi.org/10.1038/nmat2743
157 M. Kadic, T. Bückmann, R. Schittny, and M. Wegener, Metamaterials beyond electromagnetism, Rep. Prog. Phys. 76(12), 126501 (2013)
https://doi.org/10.1088/0034-4885/76/12/126501
158 H. Chen and C. T. Chan, Acoustic cloaking and transformation acoustics, J. Phys. D Appl. Phys. 43(11), 113001 (2010)
https://doi.org/10.1088/0022-3727/43/11/113001
159 S. Zhang, D. A. Genov, C. Sun, and X. Zhang, Cloaking of matter waves, Phys. Rev. Lett. 100(12), 123002 (2008)
https://doi.org/10.1103/PhysRevLett.100.123002
160 A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, Electromagnetic wormholes and virtual magnetic monopoles from metamaterials, Phys. Rev. Lett. 99(18), 183901 (2007)
https://doi.org/10.1103/PhysRevLett.99.183901
161 D. A. Genov, S. Zhang, and X. Zhang, Mimicking celestial mechanics in metamaterials, Nat. Phys. 5(9), 687 (2009)
https://doi.org/10.1038/nphys1338
162 Y. A. Urzhumov and D. R. Smith, Fluid flow control with transformation media, Phys. Rev. Lett. 107(7), 074501 (2011)
https://doi.org/10.1103/PhysRevLett.107.074501
163 J. Park, J. R. Youn, and Y. S. Song, Hydrodynamic metamaterial cloak for drag-free flow, Phys. Rev. Lett. 123(7), 074502 (2019)
https://doi.org/10.1103/PhysRevLett.123.074502
164 F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, DC electric invisibility cloak, Phys. Rev. Lett. 109(5), 053902 (2012)
https://doi.org/10.1103/PhysRevLett.109.053902
165 G. W. Milton, M. Briane, and J. R. Willis, On cloaking for elasticity and physical equations with a transformation invariant form, New J. Phys. 8(10), 248 (2006)
https://doi.org/10.1088/1367-2630/8/10/248
166 Y. Li, X. Shen, J. Huang, and Y. Ni, Temperaturedependent transformation thermotics for unsteady states: Switchable concentrator for transient heat flow, Phys. Lett. A 380(18–19), 1641 (2016)
https://doi.org/10.1016/j.physleta.2016.02.040
167 C. I. Christov, On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction, Mech. Res. Commun. 36(4), 481 (2009)
https://doi.org/10.1016/j.mechrescom.2008.11.003
168 J.P. Huang, Theoretical Thermotics: Transformation Thermotics and Extended Theories for Thermal Metamaterials, Springer, Singapore, 2020
https://doi.org/10.1007/978-981-15-2301-4
169 S. Guenneau, C. Amra, and D. Veynante, Transformation thermodynamics: Cloaking and concentrating heat flux, Opt. Express 20(7), 8207 (2012)
https://doi.org/10.1364/OE.20.008207
170 S. R. Sklan and B. Li, A unified approach to nonlinear transformation materials, Sci. Rep. 8(1), 4436 (2018)
https://doi.org/10.1038/s41598-018-22215-x
171 A. Zareei and M. R. Alam, Cloaking in shallow-water waves via nonlinear medium transformation, J. Fluid Mech. 778, 273 (2015)
https://doi.org/10.1017/jfm.2015.350
172 X. Shen, Y. Li, C. Jiang, Y. Ni, and J. Huang, Thermal cloak-concentrator, Appl. Phys. Lett. 109(3), 031907 (2016)
https://doi.org/10.1063/1.4959251
173 G. Park, S. Kang, H. Lee, and W. Choi, Tunable multifunctional thermal metamaterials: Manipulation of local heat flux via assembly of unit-cell thermal shifters, Sci. Rep. 7(1), 41000 (2017)
https://doi.org/10.1038/srep41000
174 J. Shang, B. Y. Tian, C. R. Jiang, and J. P. Huang, Digital thermal metasurface with arbitrary infrared thermogram, Appl. Phys. Lett. 113(26), 261902 (2018)
https://doi.org/10.1063/1.5063619
175 J. Wang, F. Yang, L. Xu, and J. Huang, Omnithermal restructurable metasurfaces for both infrared-light illusion and visible-light similarity, Phys. Rev. Appl. 14(1), 014008 (2020)
https://doi.org/10.1103/PhysRevApplied.14.014008
176 S. Kang, J. Cha, K. Seo, S. Kim, Y. Cha, H. Lee, J. Park, and W. Choi, Temperature-responsive thermal metamaterials enabled by modular design of thermally tunable unit cells, Int. J. Heat Mass Transfer 130, 469 (2019)
https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.127
177 C. R. Otey, W. T. Lau, and S. Fan, Thermal rectification through vacuum, Phys. Rev. Lett. 104(15), 154301 (2010)
https://doi.org/10.1103/PhysRevLett.104.154301
178 T. Ruokola, T. Ojanen, and A. P. Jauho, Thermal rectification in nonlinear quantum circuits, Phys. Rev. B 79(14), 144306 (2009)
https://doi.org/10.1103/PhysRevB.79.144306
179 P. Ben-Abdallah and S. A. Biehs, Phase-change radiative thermal diode, Appl. Phys. Lett. 103(19), 191907 (2013)
https://doi.org/10.1063/1.4829618
180 Y. Yang, S. Basu, and L. Wang, Radiation-based nearfield thermal rectification with phase transition materials, Appl. Phys. Lett. 103(16), 163101 (2013)
https://doi.org/10.1063/1.4825168
181 P. Ben-Abdallah and S. A. Biehs, Near-field thermal transistor, Phys. Rev. Lett. 112(4), 044301 (2014)
https://doi.org/10.1103/PhysRevLett.112.044301
182 V. Kubytskyi, S. A. Biehs, and P. Ben-Abdallah, Radiative bistability and thermal memory, Phys. Rev. Lett. 113(7), 074301 (2014)
https://doi.org/10.1103/PhysRevLett.113.074301
183 S. A. Dyakov, J. Dai, M. Yan, and M. Qiu, Near field thermal memory based on radiative phase bistability of VO2, J. Phys. D Appl. Phys. 48(30), 305104 (2015)
https://doi.org/10.1088/0022-3727/48/30/305104
184 J. Ordonez-Miranda, Y. Ezzahri, J. A. Tiburcio-Moreno, K. Joulain, and J. Drevillon, Radiative thermal memristor, Phys. Rev. Lett. 123(2), 025901 (2019)
https://doi.org/10.1103/PhysRevLett.123.025901
185 I. Latella, R. Messina, J. M. Rubi, and P. Ben-Abdallah, Radiative heat shuttling, Phys. Rev. Lett. 113, 074301 (2018)
https://doi.org/10.1103/PhysRevLett.121.023903
186 P. Ben-Abdallah and S. A. Biehs, Contactless heat flux control with photonic devices, AIP Adv. 5(5), 053502 (2015)
https://doi.org/10.1063/1.4915138
187 L. M. Jiji, Heat Conduction, 3rd Ed., Springer, Berlin, 2009
188 J. Ordonez-Miranda, Y. Ezzahri, J. Drevillon, and K. Joulain, Transistorlike device for heating and cooling based on the thermal hysteresis of VO2, Phys. Rev. Appl. 6(5), 054003 (2016)
https://doi.org/10.1103/PhysRevApplied.6.054003
189 J. R. Howell, M. P. Mengüç, and R. Siegel, Thermal Radiation Heat Transfer, 6th Ed., CRC Press, Boca Raton, 2016
https://doi.org/10.1201/b18835
190 H. Gomart and J. Taine, Validity criterion of the radiative Fourier law for an absorbing and scattering medium, Phys. Rev. E 83(2), 021202 (2011)
https://doi.org/10.1103/PhysRevE.83.021202
191 S. P. Jr Clark, Radiative transfer ia the earth’s mantle, Eos, Transactions American Geophysical Union 38, 931 (1957)
https://doi.org/10.1029/TR038i006p00931
192 J. R. Aronson, L. H. Bellotti, S. W. Eckroad, A. G. Emslie, R. K. McConnell, and P. C. von Thüna, Infrared spectra and radiative thermal conductivity of minerals at high temperatures, J. Geophys. Res. 75(17), 3443 (1970)
https://doi.org/10.1029/JB075i017p03443
193 J. F. Schatz and G. Simmons, Thermal conductivity of Earth materials at high temperatures, J. Geophys. Res. 77(35), 6966 (1972)
https://doi.org/10.1029/JB077i035p06966
194 V. A. Petrov, Combined radiation and conduction heat transfer in high temperature fiber thermal insulation, Int. J. Heat Mass Transfer 40(9), 2241 (1997)
https://doi.org/10.1016/S0017-9310(96)00242-6
195 J. S. Kwon, C. H. Jang, H. Jung, and T. H. Song, Effective thermal conductivity of various filling materials for vacuum insulation panels, Int. J. Heat Mass Transfer 52(23–24), 5525 (2009)
https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.029
196 S. Y. Zhao, B. M. Zhang, and X. D. He, Temperature and pressure dependent effective thermal conductivity of fibrous insulation, Int. J. Therm. Sci. 48(2), 440 (2009)
https://doi.org/10.1016/j.ijthermalsci.2008.05.003
197 X. Lu, R. Caps, J. Fricke, C. T. Alviso, and R. W. Pekala, Correlation between structure and thermal conductivity of organic aerogels, J. Non-Cryst. Solids 188(3), 226 (1995)
https://doi.org/10.1016/0022-3093(95)00191-3
198 J. J. Zhao, Y. Y. Duan, X. D. Wang, and B. X. Wang, Experimental and analytical analyses of the thermal conductivities and high-temperature characteristics of silica aerogels based on microstructures, J. Phys. D Appl. Phys. 46(1), 015304 (2013)
https://doi.org/10.1088/0022-3727/46/1/015304
199 D. Dan, H. Zhang, and W. Q. Tao, Effective structure of aerogels and decomposed contributions of its thermal conductivity, Appl. Therm. Eng. 72(1), 2 (2014)
https://doi.org/10.1016/j.applthermaleng.2014.02.052
200 Y. L. He and T. Xie, Advances of thermal conductivity models of nanoscale silica aerogel insulation material, Appl. Therm. Eng. 81, 28 (2015)
https://doi.org/10.1016/j.applthermaleng.2015.02.013
201 Y. J. Dai, Y. Q. Tang, W. Z. Fang, H. Zhang, and W. Q. Tao, A theoretical model for the effective thermal conductivity of silica aerogel composites, Appl. Therm. Eng. 128, 1634 (2018)
https://doi.org/10.1016/j.applthermaleng.2017.09.010
202 L. Xu, G. Dai, and J. Huang, Transformation multithermotics: Controlling radiation and conduction simultaneously, Phys. Rev. Appl. 13(2), 024063 (2020)
https://doi.org/10.1103/PhysRevApplied.13.024063
203 L. Xu and J. Huang, Metamaterials for manipulating thermal radiation: Transparency, cloak, and expander, Phys. Rev. Appl. 12(4), 044048 (2019)
https://doi.org/10.1103/PhysRevApplied.12.044048
204 L. Xu, S. Yang, G. Dai, and J. Huang, Transformation omnithermotics: Simultaneous manipulation of three basic modes of heat transfer, ES Energy Environ. 7, 65 (2020)
205 S. Yang, L. Xu, G. Dai, and J. Huang, Omnithermal metamaterials switchable between transparency and cloaking, J. Appl. Phys. 128(9), 095102 (2020)
https://doi.org/10.1063/5.0013270
206 A. M. Hofmeister, Mantle values of thermal conductivity and the geotherm from phonon lifetimes, Science 283(5408), 1699 (1999)
https://doi.org/10.1126/science.283.5408.1699
207 F. Bellet, E. Chalopin, F. Fichot, E. Iacona, and J. Taine, RDFI determination of anisotropic and scattering dependent radiative conductivity tensors in porous media: Application to rod bundles, Int. J. Heat Mass Transfer 52(5–6), 1544 (2009)
https://doi.org/10.1016/j.ijheatmasstransfer.2008.08.007
208 C. Su, L. J. Xu, and J. Huang,Nonlinear thermal conductivities of core-shell metamaterials: Rigorous theory and intelligent application, EPL 130(3), 34001 (2020)
https://doi.org/10.1209/0295-5075/130/34001
209 J. Li, Y. Li, P. C. Cao, T. Yang, X. F. Zhu, W. Wang, and C. W. Qiu, A continuously tunable solid-like convective thermal metadevice on the reciprocal line, Adv. Mater. 32(42), 2003823 (2020)
https://doi.org/10.1002/adma.202003823
210 D. Torrent, P. Poncelet, and J. C. Batsale, Nonreciprocal thermal material by spatiotemporal modulation, Phys. Rev. Lett. 120(12), 125501 (2018)
https://doi.org/10.1103/PhysRevLett.120.125501
211 M. Camacho, B. Edwards, and N. Engheta, Achieving asymmetry and trapping in diffusion with spatiotemporal metamaterials, Nat. Commun. 11(1), 3733 (2020)
https://doi.org/10.1038/s41467-020-17550-5
212 A. V. Getling, Rayleigh–Bénard Convection: Structures and Dynamics, World Scientific, Singapore, 1998
https://doi.org/10.1142/3097
213 E. Palm, Nonlinear thermal convection, Annu. Rev. Fluid Mech. 7(1), 39 (1975)
https://doi.org/10.1146/annurev.fl.07.010175.000351
214 F. H. Busse, Non-linear properties of thermal convection, Rep. Prog. Phys. 41(12), 1929 (1978)
https://doi.org/10.1088/0034-4885/41/12/003
215 E. Bodenschatz, W. Pesch, and G. Ahlers, Recent developments in Rayleigh–Bénard convection, Annu. Rev. Fluid Mech. 32(1), 709 (2000)
https://doi.org/10.1146/annurev.fluid.32.1.709
216 G. Ahlers, S. Grossmann, and D. Lohse, Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection, Rev. Mod. Phys. 81(2), 503 (2009)
https://doi.org/10.1103/RevModPhys.81.503
217 E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20(2), 130 (1963)
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
218 M. Y. Wong, B. Traipattanakul, C. Y. Tso, C. Y. H. Chao, and H. Qiu, Experimental and theoretical study of a water–vapor chamber thermal diode, Int. J. Heat Mass Transfer 138, 173 (2019)
https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.046
219 A. Pugsley, A. Zacharopoulos, J. Deb Mondol, and M. Smyth, Theoretical and experimental analysis of a horizontal planar Liquid–Vapour Thermal Diode (PLVTD), Int. J. Heat Mass Transfer 144, 118660 (2019)
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118660
220 J. B. Boreyko, Y. Zhao, and C. H. Chen, Planar jumpingdrop thermal diodes, Appl. Phys. Lett. 99(23), 234105 (2011)
https://doi.org/10.1063/1.3666818
221 M. Edalatpour, K. R. Murphy, R. Mukherjee, and J. B. Boreyko, Bridging-droplet thermal diodes, Adv. Funct. Mater. 30(43), 2004451 (2020)
https://doi.org/10.1002/adfm.202004451
222 Z. Meng, R. Gulfam, P. Zhang, and F. Ma, Numerical and experimental study of the thermal rectification of a solid–liquid phase change thermal diode, Int. J. Heat Mass Transfer 147, 118915 (2020)
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118915
223 H. N. Chaudhry, B. R. Hughes, and S. A. Ghani, A review of heat pipe systems for heat recovery and renewable energy applications, Renew. Sustain. Energy Rev. 16(4), 2249 (2012)
https://doi.org/10.1016/j.rser.2012.01.038
224 G. Wehmeyer, T. Yabuki, C. Monachon, J. Wu, and C. Dames, Thermal diodes, regulators, and switches: Physical mechanisms and potential applications, Appl. Phys. Rev. 4(4), 041304 (2017)
https://doi.org/10.1063/1.5001072
225 C. Khandekar and A. W. Rodriguez, Thermal bistability through coupled photonic resonances, Appl. Phys. Lett. 111(8), 083104 (2017)
https://doi.org/10.1063/1.5000151
226 A. M. Morsy, R. Biswas, and M. L. Povinelli, High temperature, experimental thermal memory based on optical resonances in photonic crystal slabs, APL Photon. 4(1), 010804 (2019)
https://doi.org/10.1063/1.5049174
227 M. Criado-Sancho and D. Jou, A simple model of thermoelastic heat switches and heat transistors, J. Appl. Phys. 121(2), 024503 (2017)
https://doi.org/10.1063/1.4974011
228 Z. M. Zhang, Nano/Microscale Heat Transfer, 2nd Ed., Springer, 2020
https://doi.org/10.1007/978-3-030-45039-7
229 M. Reina, R. Messina, S. A. Biehs, and P. Ben-Abdallah, Thermomechanical bistability of phase transition oscillators driven by near-field heat exchange, Phys. Rev. B 101, 041409(R) (2020)
https://doi.org/10.1103/PhysRevB.101.041409
230 M. Elzouka and S. Ndao, Near-field NanoThermoMechanical memory, Appl. Phys. Lett. 105(24), 243510 (2014)
https://doi.org/10.1063/1.4904828
231 G. W. Milton, The Theory of Composites, Cambridge University Press, Cambridge, 2002
232 T. C. Choy, Effective Medium Theory: Principles and Applications, 2nd Ed., Oxford University Press, Oxford, 2016
233 M. Wang and N. Pan, Predictions of effective physical properties of complex multiphase materials, Mater. Sci. Eng. Rep. 63(1), 1 (2008)
https://doi.org/10.1016/j.mser.2008.07.001
234 J. Wang, J. K. Carson, M. F. North, and D. J. Cleland, A new approach to modelling the effective thermal conductivity of heterogeneous materials, Int. J. Heat Mass Transfer 49(17–18), 3075 (2006)
https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.007
235 J. Li, Y. Li, W. Wang, L. Li, and C. W. Qiu, Effective medium theory for thermal scattering off rotating structures, Opt. Express 28(18), 25894 (2020)
https://doi.org/10.1364/OE.399799
236 J. Fan and L. Wang, Review of heat conduction in nanofluids, J. Heat Transfer 133(4), 040801 (2011)
https://doi.org/10.1115/1.4002633
237 G. Lebon, Heat conduction at micro and nanoscales: A review through the prism of Extended Irreversible Thermodynamics, J. Non-Equilib. Thermodyn. 39(1), 35 (2014)
https://doi.org/10.1515/jnetdy-2013-0029
238 D. J. Bergman and D. Stroud, Physical properties of macroscopically inhomogeneous media, Solid State Phys. 46, 147 (1992)
https://doi.org/10.1016/S0081-1947(08)60398-7
239 V. A. Markel, Maxwell Garnett approximation (advanced topics): Tutorial, J. Opt. Soc. Am. A 33(11), 2237 (2016)
https://doi.org/10.1364/JOSAA.33.002237
240 J. P. Huang and K. W. Yu, Enhanced nonlinear optical responses of materials: Composite effects, Phys. Rep. 431(3), 87 (2006)
https://doi.org/10.1016/j.physrep.2006.05.004
241 R. Wang, J. Shang, and J. Huang, Design and realization of thermal camouflage with many-particle systems, Int. J. Therm. Sci. 131, 14 (2018)
https://doi.org/10.1016/j.ijthermalsci.2018.05.027
242 J. Shang, C. Jiang, L. Xu, and J. Huang, Many-particle thermal invisibility and diode from effective media, J. Heat Transfer 140(9), 092004 (2018)
https://doi.org/10.1115/1.4039910
243 L. Xu, C. Jiang, J. Shang, R. Wang, and J. Huang, Periodic composites: Quasiuniform heat conduction, Janus thermal illusion, and illusion thermal diodes, Eur. Phys. J. B 90(11), 221 (2017)
https://doi.org/10.1140/epjb/e2017-80524-6
244 L. Xu, S. Yang, and J. Huang, Thermal transparency induced by periodic interparticle interaction, Phys. Rev. Appl. 11(3), 034056 (2019)
https://doi.org/10.1103/PhysRevApplied.11.034056
245 G. Dai, J. Shang, R. Wang, and J. Huang, Nonlinear thermotics: Nonlinearity enhancement and harmonic generation in thermal metasurfaces, Eur. Phys. J. B 91(3), 59 (2018)
https://doi.org/10.1140/epjb/e2018-80596-8
246 G. Dai, Designing Thermal metamaterials: Theories Beyond Conduction and Linearity, Ph.D. Dissertation, Fudan University, Shanghai, 2020) (in Chinese)
247 M. Maldovan, Narrow low-frequency spectrum and heat management by thermocrystals, Phys. Rev. Lett. 110(2), 025902 (2013)
https://doi.org/10.1103/PhysRevLett.110.025902
248 R. C. McPhedran, N. A. Nicorovici, L. C. Botten, and A. B. Movchan, Advances in the Rayleigh multipole method for problems in photonics and phononics, in: UTAM Symposium on Mechanical and Electromagnetic Waves in Structured Media, Solid Mechanics and Its Applications, edited by R. C. McPhedran, L. C. Botten, and N. A. Nicorovici, Springer, Dordrecht, 2001, pp 15–28
https://doi.org/10.1007/0-306-46955-3_2
249 T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, Multipole method for microstructured optical fibers. I. Formulation, J. Opt. Soc. Am. B 19(10), 2322 (2002)
https://doi.org/10.1364/JOSAB.19.002322
250 G. Gu, K. W. Yu, and P. M. Hui, First-principles approach to conductivity of a nonlinear composite, Phys. Rev. B 58(6), 3057 (1998)
https://doi.org/10.1103/PhysRevB.58.3057
251 G. Dai and J. Huang, Nonlinear thermal conductivity of periodic composites, Int. J. Heat Mass Transfer 147, 118917 (2020)
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118917
252 R. C. McPhedran and D. R. McKenzie, The conductivity of lattices of spheres (I): The simple cubic lattice, Proc. R. Soc. Lond. A Math. Phys. Sci. 359(1696), 45 (1978)
https://doi.org/10.1098/rspa.1978.0031
253 D. R. McKenzie, R. C. McPhedran, and G. H. Derrick, The conductivity of lattices of spheres (II): The body centred and face centred cubic lattices, Proc. R. Soc. Lond. A Math. Phys. Sci. 362(1709), 211 (1978)
https://doi.org/10.1098/rspa.1978.0129
254 N. A. Nicorovici and R. C. McPhedran, Transport properties of arrays of elliptical cylinders, Phys. Rev. E 54(2), 1945 (1996)
https://doi.org/10.1103/PhysRevE.54.1945
255 J. G. Yardley, R. C. McPhedran, N. A. Nicorovici, and L. C. Botten, Addition formulas and the Rayleigh identity for arrays of elliptical cylinders, Phys. Rev. E 60(5), 6068 (1999)
https://doi.org/10.1103/PhysRevE.60.6068
256 S. Yang, L. Xu, and J. Huang, Metathermotics: Nonlinear thermal responses of core-shell metamaterials, Phys. Rev. E 99(4), 042144 (2019)
https://doi.org/10.1103/PhysRevE.99.042144
257 A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, Active and tunable metamaterials, Laser Photonics Rev. 5(2), 287 (2011)
https://doi.org/10.1002/lpor.201000012
258 M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, Colloquium: Nonlinear metamaterials, Rev. Mod. Phys. 86(3), 1093 (2014)
https://doi.org/10.1103/RevModPhys.86.1093
259 G. Li, S. Zhang, and T. Zentgraf, Nonlinear photonic metasurfaces, Nat. Rev. Mater. 2(5), 17010 (2017)
https://doi.org/10.1038/natrevmats.2017.10
260 A. Krasnok, M. Tymchenko, and A. Alù, Nonlinear metasurfaces: A paradigm shift in nonlinear opticss, Mater. Today 21(1), 8 (2018)
https://doi.org/10.1016/j.mattod.2017.06.007
261 S. A. Cummer, J. Christensen, and A. Alù, Controlling sound with acoustic metamaterials, Nat. Rev. Mater. 1(3), 16001 (2016)
https://doi.org/10.1038/natrevmats.2016.1
262 K. Bertoldi, V. Vitelli, J. Christensen, and M. van Hecke, Flexible mechanical metamaterials, Nat. Rev. Mater. 2(11), 17066 (2017)
https://doi.org/10.1038/natrevmats.2017.66
263 G. Dai, J. Shang, and J. Huang, Theory of transformation thermal convection for creeping flow in porous media: Cloaking, concentrating, and camouflage, Phys. Rev. E 97(2), 022129 (2018)
https://doi.org/10.1103/PhysRevE.97.022129
264 G. Dai and J. Huang, A transient regime for transforming thermal convection: Cloaking, concentrating, and rotating creeping flow and heat flux, J. Appl. Phys. 124(23), 235103 (2018)
https://doi.org/10.1063/1.5051524
265 T. Stedman and L. M. Woods, Cloaking of thermoelectric transport, Sci. Rep. 7(1), 6988 (2017)
https://doi.org/10.1038/s41598-017-05593-6
266 A. Greenleaf, M. Lassas, and G. Uhlmann, Anisotropic conductivities that cannot be detected by EIT, Physiol. Meas. 24(2), 413 (2003)
https://doi.org/10.1088/0967-3334/24/2/353
267 G. Uhlmann, Electrical impedance tomography and Calderón’s problem, Inverse Probl. 25(12), 123011 (2009)
https://doi.org/10.1088/0266-5611/25/12/123011
268 A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, Cloaking devices, electromagnetic wormholes, and transformation optics, SIAM Rev. 51(1), 3 (2009)
https://doi.org/10.1137/080716827
269 S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, and D. H. Werner, Review of numerical optimization techniques for meta-device design, Opt. Mater. Express 9(4), 1842 (2019)
https://doi.org/10.1364/OME.9.001842
270 E. M. Dede, T. Nomura, and J. Lee, Thermal-composite design optimization for heat flux shielding, focusing, and reversal, Struct. Multidiscipl. Optim. 49(1), 59 (2014)
https://doi.org/10.1007/s00158-013-0963-0
271 G. Fujii, Y. Akimoto, and M. Takahashi, Exploring optimal topology of thermal cloaks by CMA-ES, Appl. Phys. Lett. 112(6), 061108 (2018)
https://doi.org/10.1063/1.5016090
272 G. V. Alekseev and D. A. Tereshko, Particle swarm optimization-based algorithms for solving inverse problems of designing thermal cloaking and shielding devices, Int. J. Heat Mass Transfer 135, 1269 (2019)
https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.072
273 J. Guo, Z. Qu, and X. Wang, A reverse thermal cloak design method based on inverse problem theory, ES Energy Environ. 7, 71 (2020)
274 W. Sha, Y. Zhao, L. Gao, M. Xiao, and R. Hu, Illusion thermotics with topology optimization, J. Appl. Phys. 128(4), 045106 (2020)
https://doi.org/10.1063/5.0007354
275 M. Seo, H. Park, and S. Min, Heat flux manipulation by using a single-variable formulated multi-scale topology optimization method, Int. Commun. Heat Mass Transf. 118, 104873 (2020)
https://doi.org/10.1016/j.icheatmasstransfer.2020.104873
276 J. C. Álvarez Hostos, V. D. Fachinotti, and I. Peralta, Computational design of thermo-mechanical metadevices using topology optimization, Appl. Math. Model. 90, 758 (2021)
https://doi.org/10.1016/j.apm.2020.09.030
277 G. Fujii and Y. Akimoto, Optimizing the structural topology of bifunctional invisible cloak manipulating heat flux and direct current, Appl. Phys. Lett. 115(17), 174101 (2019)
https://doi.org/10.1063/1.5123908
278 M. Farhat, S. Guenneau, P. Y. Chen, A. Alù, and K. N. Salama, Scattering cancellation-based cloaking for the Maxwell–Cattaneo heat waves, Phys. Rev. Appl. 11(4), 044089 (2019)
https://doi.org/10.1103/PhysRevApplied.11.044089
279 A. L. Chen, Z. Y. Li, T. X. Ma, X. S. Li, and Y. S. Wang, Heat reduction by thermal wave crystals, Int. J. Heat Mass Transfer 121, 215 (2018)
https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.136
280 A. Sellitto, V. Tibullo, and Y. Dong, Nonlinear heattransport equation beyond Fourier law: Application to heatwave propagation in isotropic thin layers, Contin. Mech. Thermodyn. 29(2), 411 (2017)
https://doi.org/10.1007/s00161-016-0538-6
281 Y. Guo and M. Wang, Phonon hydrodynamics and its applications in nanoscale heat transport, Phys. Rep. 595, 1 (2015)
https://doi.org/10.1016/j.physrep.2015.07.003
282 A. Sellitto and M. Di Domenico, Nonlocal and nonlinear contributions to the thermal and elastic highfrequency wave propagations at nanoscale, Contin. Mech. Thermodyn. 31(3), 807 (2019)
https://doi.org/10.1007/s00161-018-0738-3
283 M. Maldovan, Phonon wave interference and thermal bandgap materials, Nat. Mater. 14(7), 667 (2015)
https://doi.org/10.1038/nmat4308
284 M. Sledzinska, B. Graczykowski, J. Maire, E. Chavez-Angel, C. M. Sotomayor-Torres, and F. Alzina, 2D phononic crystals: Progress and prospects in hypersound and thermal transport engineering, Adv. Funct. Mater. 30(8), 1904434 (2020)
https://doi.org/10.1002/adfm.201904434
285 M. I. Hussein, C. N. Tsai, and H. Honarvar, Thermal conductivity reduction in a nanophononic metamaterial versus a nanophononic crystal: A review and comparative analysis, Adv. Funct. Mater. 30(8), 1906718 (2020)
https://doi.org/10.1002/adfm.201906718
286 N. Zen, T. A. Puurtinen, T. J. Isotalo, S. Chaudhuri, and I. J. Maasilta, Engineering thermal conductance using a two-dimensional phononic crystal, Nat. Commun. 5(1), 3435 (2014)
https://doi.org/10.1038/ncomms4435
287 B. Li, K. T. Tan, and J. Christensen, Tailoring the thermal conductivity in nanophononic metamaterials, Phys. Rev. B 95(14), 144305 (2017)
https://doi.org/10.1103/PhysRevB.95.144305
288 Y. Li, Y. G. Peng, L. Han, M. A. Miri, W. Li, M. Xiao, X. F. Zhu, J. Zhao, A. Alù, S. Fan, and C. W. Qiu, Anti-parity–time symmetry in diffusive systems, Science 364, 170 (2019)
289 P. Cao, Y. Li, Y. Peng, C. Qiu, and Z. Xue, High-order exceptional points in diffusive systems: Robust apt symmetry against perturbation and phase oscillation at apt symmetry breaking, ES Energy Environ. 7, 48 (2020)
https://doi.org/10.30919/esee8c365
290 L. Xu and J. Huang, Negative thermal transport in conduction and advection, Chin. Phys. Lett. 37(8), 080502 (2020)
https://doi.org/10.1088/0256-307X/37/8/080502
291 L. J. Xu and J. P. Huang, Active thermal wave cloak, Chin. Phys. Lett. 37(12), 120501 (2020)
https://doi.org/10.1088/0256-307X/37/12/120501
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed