Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (5): 53001   https://doi.org/10.1007/s11467-021-1050-4
  本期目录
Supplement to the paper “A collection of 505 papers on false or unconfirmed ferroelectric properties in single crystals, ceramics and polymers [Front. Phys. 14(6), 63301 (2019)]”
Zbigniew Tylczyński()
Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, Poznań, Poland
 全文: PDF(706 KB)  
Abstract

This supplement contains 222 (angel number) further papers on false or unconfirmed ferroelectric properties in single crystals, ceramics and polymers and only concerns bulk materials. Thus, the number of such papers has reached huge value 727. The papers marked in red have drastically broken the principles of symmetry because they reported the existence of ferroelectricity in crystals without the polar axis.

Key wordsferroelectricity    hysteresis loop    single crystals    multiferroic    polymers
收稿日期: 2020-10-03      出版日期: 2021-05-21
Corresponding Author(s): Zbigniew Tylczyński   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(5): 53001.
Zbigniew Tylczyński. Supplement to the paper “A collection of 505 papers on false or unconfirmed ferroelectric properties in single crystals, ceramics and polymers [Front. Phys. 14(6), 63301 (2019)]”. Front. Phys. , 2021, 16(5): 53001.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1050-4
https://academic.hep.com.cn/fop/CN/Y2021/V16/I5/53001
1 N. Ahmad, G. M. Bhat, and P. N. Kotru, Optical, dielectric and ferroelectric characteristics of gel grown erbium tartrate hexahydrate crystals, J. Electron. Mater. 48(5), 3006 (2019)
https://doi.org/10.1007/s11664-019-07057-1
2 N. Sharma, A. Gaur, and R. K. Kotnala, Signature of weak ferroelectricity and ferromagnetism in Mn doped CuO nanostructures, J. Magn. Magn. Mater. 377, 183 (2015)
https://doi.org/10.1016/j.jmmm.2014.10.055
3 E. Kabir, M. Khatun, R. J. Mustafa, K. Singh, and M. Rahman, AC electrical conductivity and dielectric properties of doping induced molecular ferroelectric diisopropylammonium bromide, Mater. Res. Express 6(9), 096306 (2019)
https://doi.org/10.1088/2053-1591/ab2c79
4 S. Sonia, N. Vijayan, M. Vij, P. Kumar, B. Singh, S. Das, R. Rajnikant, and S. H, Assessment of the imperative features of an l-arginine 4-nitrophenolate 4-nitrophenol dihydrate single crystal for nonlinear optical applications, Mater. Chem. Front. 1(6), 1107 (2017)
https://doi.org/10.1039/C6QM00217J
5 B. Want, Dielectric, ferroelectric and non-linear optical behavior of crystalline erbium tartrate dihydrate, Curr. Appl. Phys. 13(9), 1928 (2013)
https://doi.org/10.1016/j.cap.2013.08.006
6 E. Jerusha and S. S. Kirupavathy, Effect of L-asparagine as dopant on the growth and characteristics of ammonium tetroxalate dihydrate single crystal, Mater. Sci. Pol. 38(1), 48 (2020)
https://doi.org/10.2478/msp-2019-0090
7 S. Suresh, Growth, optical, dielectric and ferroelectric properties of nonlinear optical single crystal: Glycinephthalic acid, J. Electron. Mater. 45(11), 5904 (2016)
https://doi.org/10.1007/s11664-016-4798-5
8 Z. Hu, H. Zhao, Z. Cheng, J. Ding, H. Gao, Y. Han, S. Wang, Z. Xu, Y. Zhou, T. Jia, H. Kimura, and M. Osada, van der Waals force layered multiferroic hybrid perovskite (CH3NH3)2CuCl4 single crystals, Phys. Chem. Chem. Phys. 22(7), 4235 (2020)
https://doi.org/10.1039/C9CP05976H
9 R. N. Perumal and A. Marimuthu, Temperature dependence on dielectric and ferroelectric properties of rubidium titanyl phosphate single crystal, J. Mater. Sci. Mater. Electron. 31(8), 6385 (2020)
https://doi.org/10.1007/s10854-020-03194-0
10 G. Gowri, R. Saravanan, S. Sasikumar, and I. B. Shameem Banu, Exchange bias effect, ferroelectric property, primary bonding and charge density analysis of La1−xCexFeO3 multiferroics, Mater. Res. Bull. 118, 110512 (2019)
https://doi.org/10.1016/j.materresbull.2019.110512
11 R. RameshKumar, T. Ramachandran, K. Natarajan, M. Muralidharan, F. Hamed, and V. Kurapati, Fraction of rare-earth (Sm/Nd)-lanthanum ferrite-based perovskite ferroelectric and magnetic nanopowders, J. Electron. Mater. 48(3), 1694 (2019)
https://doi.org/10.1007/s11664-018-06897-7
12 Y. Wu, Q. Xie, M. Li, X. Sun, H. L. Cai, and X. S. Wu, Structural and ferroelectric properties of orthogonal crystalline in Fe-doped HoMnO3 synthesized at normal pressure, J. Mater. Sci. Mater. Electron. 30(8), 7629 (2019)
https://doi.org/10.1007/s10854-019-01078-6
13 S. Leelashree, and S. Srinath, Investigation of structural, ferroelectric, and magnetic properties of Ladoped LuFeO3 nanoparticles, J. Supercond. Nov. Magn. 33(6), 1587 (2020)
https://doi.org/10.1007/s10948-019-5114-4
14 Q. Yao, X. Xu, Y. He, W. Mao, and X. Li, Improved ferroelectric and ferromagnetic properties of (1−x)BiFeO3–xBaTiO3 ceramics, J. Supercond. Nov. Magn. 32(4), 1001 (2019)
https://doi.org/10.1007/s10948-018-4795-4
15 W. Zhang, X. Zhu, L. Wang, X. Xu, Q. Yao, W. Mao, and X. Li, Study on the magnetic and ferroelectric properties of Bi0.95Dy0.05Fe0.95M0.05O3 (M= Mn, Co) ceramics, J. Supercond. Nov. Magn. 30(11), 3001 (2017)
https://doi.org/10.1007/s10948-017-4267-2
16 R. Wang, H. Shu, W. Mao, X. Wang, H. Xue, L. Chu, J. Yang, and X. Li, Study on the magnetic and ferroelectric properties of Ca-doped and (Eu, Ca) co-doped BiFeO3, J. Supercond. Nov. Magn. 30(4), 999 (2017)
https://doi.org/10.1007/s10948-016-3883-6
17 J. Márquez Álvarez, D. A. Landínez Téllez, J. A. Cardona Vásquez, J. Roa-Rojas, and E. Ortiz Muñoz, Electric and structural properties of the new Ba2TiZrO6 ferroelectric complex perovskite, J. Supercond. Nov. Magn. 26(7), 2459 (2013)
https://doi.org/10.1007/s10948-012-1693-z
18 W. Yang, Z. Wang, T. Wang, M. Jin, J. Xu, and Y. Sui, Ferroelectric and magnetic properties of CoFe2O4/BaTiO3 prepared by microwave-assisted solgel method, J. Supercond. Nov. Magn. 30(2), 539 (2017)
https://doi.org/10.1007/s10948-016-3815-5
19 M. V. Shisode, D. N. Bhoyar, P. P. Khirade, and K. M. Jadhav, Structural, microstructural, magnetic, and ferroelectric properties of Ba2+-doped BiFeO3 nanocrystalline multifferroic material, J. Supercond. Nov. Magn. 31(8), 2501 (2018)
https://doi.org/10.1007/s10948-017-4515-5
20 S. Matteppanavar, S. Rayaprol, A. V. Anupama, B. Sahoo, and B. Angadi, On the room temperature ferromagnetic and ferroelectric properties of Pb(Fe1/2Nb1/2)O3, J. Supercond. Nov. Magn. 28(8), 2465 (2015)
https://doi.org/10.1007/s10948-015-3058-x
21 S. Matteppanavar, S. i, S. Rayaprol, B. Angadi, and B. Sahoo, Evidence for room-temperature weak ferromagnetic and ferroelectric ordering in magnetoelectric Pb(Fe0.634W0.266Nb0.1)O3 ceramic, J. Supercond. Nov. Magn.30(5), 1317 (2017)
https://doi.org/10.1007/s10948-016-3928-x
22 Z. Chen, C. Wang, T. Li, J. Hao, and J. Zhang, Investigation on electrical and magnetic properties of Gddoped BiFeO3, J. Supercond. Nov. Magn. 23(4), 527(2010)
https://doi.org/10.1007/s10948-010-0755-3
23 J. S. Bangruwa, S. Kumar, A. Chauhan, P. Kumar, and V. Verma, Modified magnetic and electrical properties of perovskite-spinel multiferroic composites, J. Supercond. Nov. Magn. 32(8), 2559 (2019)
https://doi.org/10.1007/s10948-018-4986-z
24 T. Murtaza, I. A. Salmani, J. Ali, and M. S. Khan, Effect of Mo doping at the B site on structural and electrical properties of multiferroic BiFeO3, J. Supercond. Nov. Magn. 31(6), 1955 (2018)
https://doi.org/10.1007/s10948-017-4443-4
25 W. Yang, Z. Wang, Z. Zhou, T. Wang, M. Jin, J. Xu, and Y. Sui, Synthesis and characterization of CoFe2O4/BaTiO3 multiferroic composites, J. Supercond. Nov. Magn. 30(3), 665 (2017)
https://doi.org/10.1007/s10948-016-3838-y
26 J. A. Cardona Vásquez, D. A. Landínez Téllez, J. A. Cuervo Farfán, J. Roa-Rojas, and M. E. Gómez, Synthesis and physical properties of La0.53Ca0.26Ba0.21Mn0.77Ti0.21Zr0.02O3 multiferroic material, J. Supercond. Nov. Magn. 26(7), 2455 (2013)
https://doi.org/10.1007/s10948-012-1718-7
27 J. Chen, H. Dai, T. Li, D. Liu, R. Xue, H. Xiang, and Z. Chen, Role of Mn substitution in the multiferroic properties of BiFeO3 ceramics, J. Supercond. Nov. Magn. 28(9), 2751 (2015)
https://doi.org/10.1007/s10948-015-3093-7
28 Y. Li, H. Zhang, X. Dong, Q. Li, W. Chen, H. Liu, X. Ge, X. Li, C. Dong, and S. Ren, Room-temperature multiferroic properties and local structures of the Mndoped and (Pb, Mn)-codoped BiFeO3, J. Supercond. Nov. Magn. 27(2), 575 (2014)
https://doi.org/10.1007/s10948-013-2312-3
29 J. Singh, A. Vasishth, and N. K. Verma, Multiferroic properties of Zn1−xMgxO nanoparticles, J. Supercond. Nov. Magn. 28(10), 3069 (2015)
https://doi.org/10.1007/s10948-015-3133-3
30 H. Shu, Y. Ma, Z. Wang, W. Mao, L. Chu, J. Yang, Q. Wu, Y. Min, R. Song, and X. Li, Structural, optical and multiferroic properties of (Nd, Zn)-co-doped BiFeO3 nanoparticles, J. Supercond. Nov. Magn. 30(11), 3027 (2017)
https://doi.org/10.1007/s10948-017-4129-y
31 H. Y. Dai, Z. P. Chen, T. Li, R. Z. Xue, and J. Chen, Structural and electrical properties of bismuth ferrite ceramics sintered in different atmospheres, J. Supercond. Nov. Magn. 26(10), 3125 (2013)
https://doi.org/10.1007/s10948-013-2130-7
32 S. Jindal, S. Devi, A. Vasishth, and G. Kumar, Study of structural and dielectrical properties of lead free polycrystalline electro ceramics Ba5CaTi2Nb8O30 (BCTN) for microwave tunable device applications, Mater. Sci. Appl. 9(1), 55 (2018)
https://doi.org/10.4236/msa.2018.91004
33 J. Panda, B. B. Mohanty, P. S. Sahoo, and R. N. P. Choudhary, Preparation and study of dielectric and electrical conductivity of Ba5NdTi3V7O30 ceramics, Open Acc. Libr. J. 5, e4864 (2018)
https://doi.org/10.4236/oalib.1104834
34 N. Kumar, B. Narayan, M. Kumar, A. Kumar Singh, S. Dhiman, and S. Kumar, Effect of Nd3+ substitution on structural, ferroelectric, magnetic and electrical properties of BiFeO3–PbTiO3 binary system, SN Appl. Sci. (Basel) 1, 874 (2019)
https://doi.org/10.1007/s42452-019-0919-0
35 P. Bai, Y. Zeng, J. Han, Y. Wei, M. Li, and Y. Li, Structure, electrical, dielectric and ferroelectric properties of (1 − x)BiFeO3–xAl2O3 ceramics, J. Mater. Sci. Mater. Electron. 30(16), 15413 (2019)
https://doi.org/10.1007/s10854-019-01916-7
36 S. Dabas, M. Kumar, P. Chaudhary, S. Shankar, S. Roy, and O. P. Thakur, Structural, energy storage analysis and enhanced magnetoelectric coupling in Mn modified multiferroic BiFeO3, J. Electron. Mater. 48(9), 5785 (2019)
https://doi.org/10.1007/s11664-019-07370-9
37 Y. Xue, R. Xu, Z. Wang, R. Gao, C. Li, G. Chen, X. Deng, W. Cai, and C. Fu, Effect of magnetic phase on structural and multiferroic properties of Ni1−xZnxFe2O4/BaTiO3 composite ceramics, J. Electron. Mater. 48(8), 4806 (2019)
https://doi.org/10.1007/s11664-019-07261-z
38 R. Xu, S. Zhang, F. Wang, Q. Zhang, Z. Li, Z. Wang, R. Gao, W. Cai, and C. Fu, The study of microstructure, dielectric and multiferroic properties of (1 − x)Co0.8Cu0.2Fe2O4–xBa0.6Sr0.4TiO3 composites, J. Electron. Mater. 48(1), 386 (2019)
https://doi.org/10.1007/s11664-018-6718-3
39 P. R. Das, B. Pati, B. C. Sutar, and R. N. P. Choudhury, Study of structural and electrical properties of a new type of complex tungsten bronze electroceramics: Li2Pb2Y2W2Ti4V4O30, J. Mod. Phys. 3, 870 (2012)
40 M. Shariq, D. Kaur, V. S. Chandel, P. K. Jain, S. Florence, M. Sharma, and S. Hussain, Study of structural, magnetic and optical properties of BiFeO3–PbTiO3 multiferroic composites, Arab. J. Sci. Eng. 44(1), 613 (2019)
https://doi.org/10.1007/s13369-018-3543-1
41 Y. Shia, Y. Pu, Q. Zhang, J. Li, and L. Guo, Dielectric and multiferroic properties of two-layered SrBi2Nb2−xFexO9 aurivillius compounds, Ceram. Int. 44(S1), S61 (2018)
https://doi.org/10.1016/j.ceramint.2018.08.251
42 Kumar, K. L. Yadav, J. Shah, and R. K. Kotnala, Investigation of magnetoelectric effect in lead free K0.5Na0.5NbO3–BaFe12O19 novel composite system, J. Adv. Ceram 8(3), 333 (2019)
https://doi.org/10.1007/s40145-019-0315-7
43 P. S. Sahoo, A. Panigrahi, S. K. Patri, and R. N. P. Choudhary, Structural, dielectric, electrical and piezoelectric properties of Ba4SrRTi3V7O30 (R=Sm, Dy) ceramics, Cent. Eur. J. Phys. 6(4), 843 (2008)
https://doi.org/10.2478/s11534-008-0112-3
44 S. K. Barik, R. N. P. Choudhary, and P. K. Mahapatra, Structural and dielectric studies of lead-free ceramics: Na1/2Y1/2TiO3, Cent. Eur. J. Phys. 6(4), 849 (2008)
https://doi.org/10.2478/s11534-008-0106-1
45 P. S. Sahoo, A. Panigrahi, S. K. Patri, and R. N. P. Choudhary, Dielectric properties of Ba3Sr2DyTi3V7O30 ceramics, Cent. Eur. J. Phys. 8(4), 639 (2010)
https://doi.org/10.2478/s11534-009-0130-9
46 S. K. Patri and R. N. P. Choudhary, Phase transition in Bi8Fe6Ti3O27 multiferroic ceramics, Cent. Eur. J. Phys. 6(3), 450 (2008)
https://doi.org/10.2478/s11534-008-0064-7
47 B. Behera, P. Nayak, and R. N. P. Choudhary, Structural and electrical properties of KCa2Nb5O15 ceramics, Cent. Eur. J. Phys. 6(2), 289 (2008)
https://doi.org/10.2478/s11534-008-0030-4
48 X.-Z. Deng, J. Zhang, and S.-T. Zhang, Simultaneously enhanced ferroelectric and magnetic properties in 0.675BiFe1−xCrxO3–0.325PbTiO3 (x= 0–0.05) ceramics, J. Mater. Sci. Mater. Electron. 28(3), 2435 (2017)
https://doi.org/10.1007/s10854-016-5815-4
49 A. Kumar and D. Varshney, Crystal structure refinement of Bi1−xNdxFeO3 multiferroic by the Rietveld method, Ceram. Int. 38(5), 3935 (2012)
https://doi.org/10.1016/j.ceramint.2012.01.046
50 W. Liu, S. Tsukada, and Y. Akishige, Preparation and ferroelectric properties of MnO2 doped BaTi2O5 ceramics by spark plasma sintering from the solid-statecalcined powder, J. Mater. Sci. Mater. Electron. 25(3), 1280 (2014)
https://doi.org/10.1007/s10854-014-1722-8
51 M. Muneeswaran and N. V. Giridharan, Effect of Dysubstitution on the structural, vibrational, and multiferroic properties of BiFeO3 nanoparticles, J. Appl. Phys. 115(21), 214109 (2014)
https://doi.org/10.1063/1.4881529
52 W. Mao, X. Wang, Y. Han, X. Li, Y. Li, Y. Wang, Y. Ma, X. Feng, T. Yang, J. Yang, and W. Huang, Effect of Ln (Ln= La, Pr) and Co co-doped on the magnetic and ferroelectric properties of BiFeO3 nanoparticles, J. Alloys Compd. 554, 520 (2014)
https://doi.org/10.1016/j.jallcom.2013.09.117
53 M. P. Rao, S. Musthafa, J. J. Wu, and S. Anandan, Facile synthesis of perovskite LaFeO3 ferroelectric nanostructures for heavy metal ion removal applications, Mater. Res. Phys 232, 200 (2019)
https://doi.org/10.1016/j.matchemphys.2019.04.086
54 O. M. Hemeda, B. I. Salem, H. Abdelfatah, G. Abdelsatar, and M. Shihab, Dielectric and ferroelectric properties of barium zirconate titanate ceramics prepared by ceramic method, Physica B 574, 411680 (2019)
https://doi.org/10.1016/j.physb.2019.411680
55 R. Gao, X. Qin, Q. Zhang, Z. Xu, Z. Wang, C. Fu, G. Chen, X. Deng, and W. Cai, A comparative study of the dielectric, ferroelectric and anomalous magnetic properties of Mn0.5Mg0.5Fe2O4/Ba0.8Sr0.2Ti0.9Zr0.1O3 composite ceramics, Mater. Res. Phys. 232, 428 (2019)
https://doi.org/10.1016/j.matchemphys.2019.05.016
56 H. Zhao, R. Yang, Y. Li, G. Liu, Y. Lu, J. Tang, S. Zhang, and G. Li, Enhanced dielectric and multiferroic properties in BaTiO3 doped Bi0.85Nd0.15Fe0.98Mn0.02O3 ceramics, J. Magn. Magn. Mater. 494, 165779 (2020)
https://doi.org/10.1016/j.jmmm.2019.165779
57 T.-H. Wang, C.-S. Tu, Y. Ding, T.-C. Lin, C.-S. Ku, W.-C. Yang, H.-H. Yu, K.-T. Wu, Y.-D. Yao, and H.- Y. Lee, Phase transition and ferroelectric properties of xBiFeO3–(1 − x)BaTiO3 ceramics, Curr. Appl. Phys. 11(3), s240 (2011)
https://doi.org/10.1016/j.cap.2011.01.037
58 T. Wang, L. Jin, Y. Tian, L. Shu, Q. Hu, and X. Wei, Microstructure and ferroelectric properties of Nb2O5- modified BiFeO3–BaTiO3 lead-free ceramics for energy storage, Mater. Lett. 137, 79 (2014)
https://doi.org/10.1016/j.matlet.2014.08.133
59 Z. X. Cheng, A. H. Li, X. L. Wang, S. X. Dou, K. Ozawa, H. Kimura, S. J. Zhang, and T. R. Shrout, Structure, ferroelectric properties, and magnetic properties of the La-doped bismuth ferrite, J. Appl. Phys. 103(7), 07E507 (2008)
https://doi.org/10.1063/1.2839325
60 R. Rai, S. K. Mishra, N. K. Singh, S. Sharma, and A. L. Kholkin, Preparation, structures, and multiferroic properties of single-phase BiRFeO3, R= La and Er ceramics, Curr. Appl. Phys. 11(3), 508 (2011)
https://doi.org/10.1016/j.cap.2010.09.003
61 E. Mostafavi, A. Ataie, M. Ahmadzadeh, M. Palizdar, T. P. Comyn, and A. J. Bell, Synthesis of nanostructured Bi1−xBaxFeO3 ceramics with enhanced magnetic and electrical properties, Mater. Chem. Phys. 162, 106 (2015)
https://doi.org/10.1016/j.matchemphys.2015.05.017
62 N. B. Delfard, H. Maleki, A. M. Badizi, and M. Taraz, Enhanced structural, optical, and multiferroic properties of rod-like bismuth iron oxide nanoceramics by dopant lanthanum, J. Supercond. Nov. Magn. 33(4), 1207 (2020)
https://doi.org/10.1007/s10948-019-05294-3
63 P. Choudhary, P. Saxena, A. Yadav, A. K. Sinha, V. N. Rai, M. D. Varshney, and A. Mishra, Weak ferroelectricity and leakage current behavior of multiferroic CoCr2O4 nanomaterials, J. Supercond. Nov. Magn. 32(8), 2639 (2019)
https://doi.org/10.1007/s10948-019-5001-z
64 S. Matteppanavar, J. Angadi, T. Nagaraja, S. Rayaprol, and B. Angadi, Room temperature neutron diffraction, electron paramagnetic resonance and ferroelectric properties of relax or ferroelectric Pb(Fe0.6Nb0.2W0.2)O3, AIP Conf. Proc. 2142, 090009 (2019)
https://doi.org/10.1063/1.5122453
65 M. Khan, A. Mishra, J. Shukla, and P. Sharma, Structural, optical and electrical properties of BaTiO3– NiFe2O4 based multifunctional composites, AIP Conf. Proc. 2142, 160012 (2019)
https://doi.org/10.1063/1.5122593
66 F. Ma and Hongjian Zhao, Optical, magnetic, ferroelectric properties and photocatalytic activity of Bi2Fe4O9 nanoparticles through a hydrothermal assisted sol–gel method, Russ. J. Phys. Chem. 93(10), 2079 (2019)
https://doi.org/10.1134/S0036024419100169
67 Q.-H. Jiang, C.-W. Nan, and Z.-J. Shen, Synthesis and properties of multiferroic La-modified BiFeO3 ceramics, J. Am. Ceram. Soc. 89(7), 2123 (2006)
https://doi.org/10.1111/j.1551-2916.2006.01062.x
68 A. Gautam and V. S. Rangra, Effect of Ba ions substitution on multiferroic properties of BiFeO3 perovskite, Cryst. Res. Technol. 45(9), 953 (2010)
https://doi.org/10.1002/crat.201000050
69 P. Sharma and D. Varshney, Effect of La and Pb substitution on structural and electrical properties of parent and La/Pb co-doped BiFeO3 multiferroic, Adv. Mater. Lett. 5(2), 71 (2014)
https://doi.org/10.5185/amlett.2013.fdm.10
70 M. Hasan, M. A. Hakim, M. A. Basith, M. S. Hossain, B. Ahmmad, M. A. Zubair, A. Hussain, and M. F. Islam, Size dependent magnetic and electrical properties of Ba-doped nanocrystalline BiFeO3, AIP Adv. 6(3), 035314 (2016)
https://doi.org/10.1063/1.4944817
71 K. Naveen, N. Kumar, T. K. Mandal, P. D. Babu, V. Siruguri, P. K. Maji, and A. K. Paul, Multiferroic behaviour in B-site Cr-doped hexagonal YInO3 perovskites: Synthesis, structure and properties, J. Mol. Struct. 1185, 432 (2019)
https://doi.org/10.1016/j.molstruc.2019.02.099
72 V. M. Gaikwad, and S. A. Acharya, Perovskitespinel composite approach to modify room temperature structural, magnetic and dielectric behavior of BiFeO3, J. Alloys Compd. 695, 3689 (2017)
https://doi.org/10.1016/j.jallcom.2016.11.367
73 B. Dhanalakshmi, P. Kollu, B. C. Sekhar, B. P. Rao, and P. S. V. S. Rao, Enhanced magnetic and magnetoelectric properties of Mn doped multiferroic ceramics, Ceram. Int. 43(12), 9272 (2017)
https://doi.org/10.1016/j.ceramint.2017.04.085
74 A. Mitra, A. Shaw, and P. K. Chakrabarti, Microstructure, dielectric, ferroelectric and magnetoelectric coupling of a novel multiferroic of [(GdMnO3)0.7(CoFe2O4)0.3]0.5[TiO2] 0.5 nanocomposite, Mater. Chem. Phys. 240, 122242 (2020)
https://doi.org/10.1016/j.matchemphys.2019.122242
75 H. Zhao, R. Yang, Y. Li, G. Liu, Y. Lu, J. Tang, S. Zhang, and G. Li, Enhanced dielectric and multiferroic properties in BaTiO3 doped Bi0.85Nd0.15Fe0.98Mn0.02O3 ceramics, J. Magn. Magn. Mater. 494, 165779 (2020)
https://doi.org/10.1016/j.jmmm.2019.165779
76 C. Chakrabarti, Q. Fu, X. Chen, Y. Qiu, S. Yuan, and C. Li, Modulation of magnetic, ferroelectric and leakage properties by HoFeO3 substitution in multiferroic 0.7BiFeO3–0.3Ba0.8Ca0.2TiO3 solid solutions, Ceram. Int. 46(1), 212 (2020)
https://doi.org/10.1016/j.ceramint.2019.08.250
77 M. Shariq, S. Hussain, M. Rafique, M. Naveed-Ul-Haq, and A. Rehman, Enhanced multiferroic response in new binary solid solution 0.5Bi0.70A0.30FeO3– 0.5PbTi0.5Fe0.5O3 (A= Sr, Pb, and Ba) systems, J. Magn. Magn. Mater. 492, 165685 (2019)
https://doi.org/10.1016/j.jmmm.2019.165685
78 R. Pandey, U. Shankar, S. S. Meena, and A. K. Singh, Stability of ferroelectric phases and magnetoelectric response in multiferroic (1 − x)Bi(Ni1/2Ti1/2)O3– PbTiO3/xNi0.6Zn0.4Fe2O4 particulate composites, Ceram. Int. 45(17), 23013 (2019)
https://doi.org/10.1016/j.ceramint.2019.07.348
79 R. Sheikh, V. M. Gaikwad, and S. A. Acharya, Investigation of multiferroic behavior on flakes-like BiFeO3, J. Appl. Phys. Conf. Proc. 1731, 140030 (2016)
https://doi.org/10.1063/1.4948196
80 F. L. Wang, Y. Li, N. Wang, L. Zhu, A. Jain, Y. G. Wang, and F. G. Chen, Enhanced magnetic, ferroelectric and optical properties of Sr and Co co-doped BiFeO3 powders, J. Alloys Compd. 810, 151941 (2019)
https://doi.org/10.1016/j.jallcom.2019.151941
81 R. Gao, X. Qin, H. Wu, R. Xu, L. Liu, Z. Wang, C. Fu, W. Cai, G. Chen, and X. Deng, Effect of Ti doping on the dielectric, ferroelectric and magnetic properties of Bi0.86La0.08Sm0.14FeO3 ceramics, Mater. Res. Express 6, 106317 (2019)
https://doi.org/10.1088/2053-1591/ab3fee
82 Arti, S. Kumar, P. Kumar, R. Walia, and V. Verma, Improved ferroelectric, magnetic and photovoltaic properties of Pr doped multiferroic bismuth ferrites for photovoltaic application, Res. Phys. 14, 102403 (2019)
https://doi.org/10.1016/j.rinp.2019.102403
83 G. R. Gajula and L. R. Buddiga, Structural, ferroelectric, dielectric, impedance and magnetic properties of Gd and Nb doped barium titanate-lithium ferrite solid solutions, J. Magn. Magn. Mater. 494, 165822 (2020)
https://doi.org/10.1016/j.jmmm.2019.165822
84 L. Hou, L. Shi, J. Zhao, S. Zhou, S. Pan, X. Yuan, and Y. Xin, Room-temperature multiferroicity in CeFeO3 ceramics, J. Alloys Compd. 797, 363 (2019)
https://doi.org/10.1016/j.jallcom.2019.05.078
85 Y. Wei, C. Bai, W. Zhu, C. Jin, D. Gao, G. Xu, Z. Jian, and Y. Zeng, Multiferroic orders in 0.5BiFeO3– 0.5Bi0.5K0.5TiO3, Ceram. Int. 45, 15725 (2019)
https://doi.org/10.1016/j.ceramint.2019.04.249
86 A. Puhan, A. K. Nayak, B. Bhushan, S. Praharaj, S. S. Meena, and D. Rout, Enhanced electrical, magnetic and optical behaviour of Cr doped Bi0.98Ho0.02FeO3 nanoparticles, J. Alloys Compd. 796, 229 (2019)
https://doi.org/10.1016/j.jallcom.2019.05.025
87 S. K. Kundu, D. K. Rana, and S. Basu, Observation of room temperature multiferroic and electrical properties in gadolinium ferrite nanoparticles, Mod. Phys. Lett. B 33(21), 1950243 (2019)
https://doi.org/10.1142/S0217984919502439
88 S. T. Dadami, S. Rayaprol, V. Sathe, and B. Angadi, Effect of electric poling on structural, magnetic and ferroelectric properties of 0.8PbFe0.5Nb0.5O3–0.2BiFeO3 multiferroic solid solution, Ceram. Int. 45(10), 13171 (2019)
https://doi.org/10.1016/j.ceramint.2019.03.253
89 D. D. Mishra, D. M. Tewelde, M. Wang, and G. Tan, Multiferroic properties of PbFe12O19–PbTiO3 composite ceramics, J. Mater. Sci. Mater. Electron. 30(11), 10830 (2019)
https://doi.org/10.1007/s10854-019-01426-6
90 B. Dhanalakshmi, K. Pratap, B. P. Rao, and P. S. V. S. Rao, Effects of Mn doping on structural, dielectric and multiferroic properties of BiFeO3 nanoceramics, J. Alloys Compd. 676, 193 (2016)
https://doi.org/10.1016/j.jallcom.2016.03.208
91 S. Divya Lakshmi, and I. B. Shameem Banu, Tailoring the multiferroic properties of BiFeO3 by co-doping Er at Bi site with aliovalent Nb, Mn and Mo at Fe site, Appl. Ceram. Technol. 16(4), 1622 (2019)
https://doi.org/10.1111/ijac.13201
92 M. Kumar, D. M. Phase, and R. J. Choudhary, Structural, ferroelectric and dielectric properties of multiferroic YMnO3 synthesized via microwave assisted radiant hybrid sintering, Heliyon 5(5), e01691 (2019)
https://doi.org/10.1016/j.heliyon.2019.e01691
93 S. Godara, N. Sinha, G. Ray, and B. Kumar, Combined structural, electrical, magnetic and optical characterization of bismuth ferrite nanoparticles synthesized by auto-combustion router, J. Asian Ceram. Soc. 2(4), 416 (2014)
https://doi.org/10.1016/j.jascer.2014.09.001
94 S. Thakur, K. Sharma, and N. S. Negi, Investigating various properties of lead free 65Na0.5Bi0.5TiO3– 35CoFe2O4 multiferroic composite, AIP Conf. Proc. 2115, 030404 (2019)
https://doi.org/10.1063/1.5113243
95 N. S. Negi, R. Kumar, H. Sharma, J. Shah, and R. K. Kotnala, Structural, multiferroic, dielectric and magnetoelectric properties of lead-free composites, J. Magn. Magn. Mater. 456, 292 (2017)
96 A. Sharma, R. K. Kotnala, and N. S. Negi, Structural, dielectric, magnetic and ferroelectric properties of (Pb- TiO3)0.5–(Co0.5Zn0.5Fe2O4)0.5 composite, Physica B 415, 97 (2013)
https://doi.org/10.1016/j.physb.2013.01.032
97 N. K. Verma, G. Kamde, D. Kumar, C. B. Singh, and A. K. Singh, Synthesis and dielectric characterization of BaZrNb2O8 high temperature piezoelectric ceramics, AIP Conf. Proc. 2115, 030378 (2019)
https://doi.org/10.1063/1.5113417
98 G. Dhir, P. Uniyal, and N. K. Verma, Effect of particle size on the multiferroic properties of Tb-doped BiFeO3 nanoparticles, J. Supercond. Nov. Magn. 29(10), 2621 (2016)
https://doi.org/10.1007/s10948-016-3582-3
99 C. Panda, P. Kumar, and M. Kar, Structural stability of BiFeO3 by chemical modification in Bi as well as Fe sites, AIP Conf. Proc. 1512, 1286 (2013)
https://doi.org/10.1063/1.4791523
100 V. S. Puli, I. Coondoo, N. Panwar, A. Srinivas, and R. S. Katiyar, Room temperature structural, morphological, and enhanced ferroelectromagnetic properties of xBa0.7Ca0.3–(1 − x)BaFe0.2Ti0.3 multiferroic composites, J. Appl. Phys.111, 102802 (2012)
https://doi.org/10.1063/1.4714657
101 Y. Zhu, C. Quan, Y. Ma, Q. Wang, W. Mao, X. Wang, J. Zhang, Y. Min, J. Yang, X. Li, and W. Huang, Effect of Eu, Mn co-doping on structural, optical and magnetic properties of BiFeO3 nanoparticles, Mater. Sci. Semicond. Process. 57, 178 (2017)
https://doi.org/10.1016/j.mssp.2016.10.023
102 Md. R. Islam, Md. S. Islam, M. A. Zubair, H. M. Usama, Md. S. Azam, and A. Sharif, Evidence of superparamagnetism and improved electrical propertiesin Ba and Ta co-doped BiFeO3 ceramics, J. Alloys Compd. 735, 2584 (2018)
https://doi.org/10.1016/j.jallcom.2017.11.323
103 N. Kumar, A. Gaur, and G. D. Varma, Enhanced magnetization and magnetoelectric coupling in hydrogen treated hexagonal, J. Alloys Compd. 509, 1060 (2011)
https://doi.org/10.1016/j.jallcom.2010.09.181
104 A. K. Sinha, B. Bhushan, Jagannath, R. K. Sharma, S. Sen, B. P. Mandal, S. S. Meena, P. Bhatt, C. L. Prajapat, A. Priyam, S. K. Mishra, and S. C. Gadkari, Enhanced dielectric, magnetic and optical properties of Cr-doped BiFeO3 multiferroic nanoparticles synthesized by sol–gel route, Res. Phys. 13, 102299 (2019)
https://doi.org/10.1016/j.rinp.2019.102299
105 Q. Q. Wang, Z. Wang, X. Q. Liu, and X. M. Chen, Improved structure stability and multiferroic characteristics in CaTiO3-modified BiFeO3 ceramics, J. Am. Ceram. Soc. 95(2), 670 (2012)
https://doi.org/10.1111/j.1551-2916.2011.04824.x
106 C. X. Li, B. Yang, S. T. Zhang, R. Zhang, Y. Sun, H. J. Zhang, and W. W. Cao, Enhanced multiferroic and magnetocapacitive properties of (1 − x)Ba0.7Ca0.3TiO3–xBiFeO3 ceramics, J. Am. Ceram. Soc. 97(3), 816 (2014)
https://doi.org/10.1111/jace.12702
107 Q.-H. Jiang, A. Mei, Y.-H. Lin, C.-W. Nan, and Z. Shen, Ferroic properties of highly dense multiferroic Bi1−xLa0.05TbxFeO3 ceramics via sheltered spark plasma sintering, J. Am. Ceram. Soc. 91(7), 2189 (2008)
https://doi.org/10.1111/j.1551-2916.2008.02423.x
108 Y. Qin, X. M. Chen, and X. Q. Liu, Dielectric, ferroelectric, and magnetic characteristics of LuFeCuO4 ceramics, J. Am. Ceram. Soc. 95(3), 977 (2012)
https://doi.org/10.1111/j.1551-2916.2011.04858.x
109 Y. Bai, X. L. Zhu, X. M. Chen, and X. Q. Liu, Dielectric and ferroelectric characteristics of Ba5NdFe1.5Nb8.5O30 tungsten bronze ceramics, J. Am. Ceram. Soc. 93(11), 3573 (2010)
110 S. Dash, R. N. P. Choudhary, P. R. Das, and A. Kumar, Structural, dielectric and multiferroic properties of (Bi0.5K0.5)(Fe.5Nb0.5)O3, Can. J. Phys. 93(7), 738 (2015)
https://doi.org/10.1139/cjp-2014-0025
111 V. Turchenko, V. G. Kostishyn, S. Trukhanov, F. Damay, F. Porcher, M. Balasoiu, N. Lupu, B. Bozzo, I. Fina, A. Trukhanov, J. Waliszewski, K. Recko, and S. Polosan, Crystal and magnetic structures, magnetic and ferroelectric properties of strontium ferrite partially substituted with in ions, J. Alloys Compd. 821, 123412 (2020)
https://doi.org/10.1016/j.jallcom.2019.153412
112 G. Tan and X. Chen, Synthesis, structures, and multiferroic properties of strontium hexaferrite ceramics, J. Electron. Mater. 42(5), 906 (2013)
https://doi.org/10.1007/s11664-012-2426-6
113 V. G. Kostishyn, L. V. Panina, V. Timofeev, L. V. Kozhitov, A. N. Kovalev, and A. K. Zyuzin, Dual ferroic properties of hexagonal ferrite ceramics BaFe12O19 and SrFe12O19, J. Magn. Magn. Mater. 400, 327 (2016)
https://doi.org/10.1016/j.jmmm.2015.09.011
114 Z. Manzoor, A. Khalid, G. M. Mustafa, S. M. Ramay, S. Naseem, and S. Atiq, Magnetoelectric coupling caused by strain mediation in hetero-structured spinelperovskite multiferroic composites, J. Magn. Magn. Mater. 500, 166409 (2020)
https://doi.org/10.1016/j.jmmm.2020.166409
115 S. K. Upadhyay, V. R. Reddy, S. M. Gupta, N. Chauhan, and A. Gupta, Reduced leakage current and improved ferroelectricity in magneto-electric composite ceramics prepared with microwave assisted radiant hybrid sintering, AIP Adv. 5(4), 047135 (2015)
https://doi.org/10.1063/1.4919097
116 T. P. Wendari, S. Arief, N. Mufti, A. Insani, J. Baas, G. R. Blake, and Zulhadjri, Structural and multiferroic properties in double-layer Aurivillius phase Pb0.4Bi2.1La0.5Nb1.7Mn0.3O9 prepared by molten salt method, J. Alloys Compd. 820, 153145 (2020)
https://doi.org/10.1016/j.jallcom.2019.153145
117 M. K. Das, M. A. Zubair, H. Tanaka, and A. K. M. A. Hossain, An experimental insight of the multiferroic properties of magne to electrically coupled xLNCZFO+(1−x)BSTDO composites, J. Magn. Magn. Mater. 502, 166449 (2020)
https://doi.org/10.1016/j.jmmm.2020.166449
118 T. Acharya and R. N. P. Choudhary, Structural, electrical and magneto-electric properties of chemically synthesized Bi/PbTiO3-modified cobalt titanate, Physica B 582, 411970 (2020)
https://doi.org/10.1016/j.physb.2019.411970
119 P. Gupta, P. K. Mahapatra, and R. N. P. Choudhary, Structural and electrical characteristics of Bi2YZrVO9 ceramic, Mater. Res. Bull. 124, 110745 (2020)
https://doi.org/10.1016/j.materresbull.2019.110745
120 D. N. Bhoyar, S. B. Somvanshi, P. B. Kharat, A. A. Pandit, and K. M. Jadhav, Structural, infrared, magnetic and ferroelectric properties of Sr0.5Ba0.5Ti1−xFexO3 nanoceramics: Modifications via trivalent Fe ion doping, Physica B 581, 411944 (2020)
https://doi.org/10.1016/j.physb.2019.411944
121 S. Das, R. C. Sahoo, and T. K. Nath, Investigation of room temperature multiferroic properties in sol–gel derived gadolinium, cobalt doped BiFeO3 nanoceramics, J. Appl. Phys. 127(5), 054101 (2020)
https://doi.org/10.1063/1.5125239
122 N. Pradhani, P. K. Mahapatra, R. N. P. Choudhary, and R. Giri, Structural, dielectric and electrical characteristics of manganese modified Bi0.5K0.5TiO3 ceramic, Physica B 580, 411719 (2020)
https://doi.org/10.1016/j.physb.2019.411719
123 A. D. Mani and I. Soibam, Influence of diamagnetic Zn on structural, ferroelectric and ferromagnetic properties of BiFe1−xZnxO3 (0%≤x≤8%), Physica B 560, 97 (2019)
https://doi.org/10.1016/j.physb.2019.02.042
124 A. Panda, R. Govindaraj, and G. Amarendra, Magneto dielectric coupling in Bi2Fe4O9, Physica B 570, 206 (2019)
https://doi.org/10.1016/j.physb.2019.06.045
125 B. Shri Prakash and K. B. R. Varma, Effect of sintering conditions on the microstructural, dielectric, ferroelectric and varistor properties of CaCu3Ti4O12 and La2/3Cu3Ti4O12 ceramics belonging to the high and low dielectric constant members of ACu3M4O12 (A=alkali, alkaline-earth metal, rare-earth metal or vacancy, M=transition metal) family of oxides, Physica B 403(13–16), 2246 (2008)
https://doi.org/10.1016/j.physb.2007.12.004
126 F. Mumtaz, G. H. Jaffari, Q. Hassan, and S. I. Shah, Correlation between ionic size and valence state of tetra, penta and hexavalent B-site substitution with solubility limit, phase transformation and multiferroic properties of Bi0.875Eu0.125FeO3, Physica B 538, 213 (2018)
https://doi.org/10.1016/j.physb.2018.03.048
127 J. Fisher, S. H. Jang, M. S. Park, H. Sun, S. H. Moon, J. S. Lee, and A. Hussain, The effect of niobium doping on the electrical properties of 0.4(Bi0.5K0.5)TiO3– 0.6BiFeO3 lead-free piezoelectric ceramics, Materials (Basel) 8(12), 8183 (2015)
https://doi.org/10.3390/ma8125457
128 S. Hait, S. Ghose, and K. Mandal, Effect of Ba and Y co-doping on the structural and magneto-electric properties of BiFeO3 ceramic, J. Alloys Compd. 822, 153614 (2020)
https://doi.org/10.1016/j.jallcom.2019.153614
129 W.-M. Zhu, H.-Y. Guo, and Z.-G. Ye, Structure and properties of multiferroic (1−x)BiFeO3–xPbTiO3 single crystals, J. Mater. Res. 22(8), 2136 (2007)
https://doi.org/10.1557/jmr.2007.0268
130 T. T. Carvalho, J. R. A. Fernandes, J. Perez de la Cruz, J. V. Vidal, N. A. Sobolev, F. Figueiras, S. Das, V. S. Amaral, A. Almeida, J. A. Moreira, and P. B. Tavares, Room temperature structure and multiferroic properties in Bi0.7La0.3FeO3 ceramics, J. Alloys Compd. 554, 97 (2013)
https://doi.org/10.1016/j.jallcom.2012.11.018
131 Y. J. Wu, N. Wang, S. P. Gu, Y. Q. Lin, and X. M. Chen, Dielectric and magnetic properties of Ba5BiNiNb9O30 ceramics, Curr. Appl. Phys. 11(3), s247 (2011)
https://doi.org/10.1016/j.cap.2011.01.027
132 A. R. Khan, G. M. Mustafa, S. K. Abbas, S. Atiq, M. Saleem, S. M. Ramay, and S. Naseem, Flexible ferroelectric and magnetic orders in BiFeO3/MnFe2O4 nanocomposites to steer wide range energy and data storage capability, Res. Phys. 16, 102956 (2020)
https://doi.org/10.1016/j.rinp.2020.102956
133 M. M. Rhaman, M. A. Matin, M. A. Hakim, and M. F. Islam, Dielectric, ferroelectric and ferromagnetic properties of samarium doped multiferroic bismuth ferrite, Mater. Res. Express 6(12), 125080 (2019)
https://doi.org/10.1088/2053-1591/ab57c2
134 A. Mukherjee, S. Basu, P. K. Manna, S. M. Yusuf, and M. Pal, Giant magnetodielectric and enhanced multiferroic properties of Sm-doped bismuth ferrite nanoparticles, J. Mater. Chem. C 2(29), 5885 (2014)
https://doi.org/10.1039/c4tc00591k
135 M. Shariq, D. Kaur, V. S. Chandel, and M. A. Siddiqui, Electrical, surface morphology and magneto-capacitance properties of Pb free multiferroic (BiFeO3)1−x(BaTiO3)x solid solutions, Acta Phys. Pol. A 127(6), 1675 (2015)
https://doi.org/10.12693/APhysPolA.127.1675
136 M. S. Wu, Z. B. Huang, C. X. Han, S. L. Yuan, C. L. Lu, and S. C. Xia, Enhanced multiferroic properties of BiFeO3 ceramics by Ba and high-valence Nb co-doping, Solid State Commun. 152(24), 2142 (2012)
https://doi.org/10.1016/j.ssc.2012.09.005
137 Y. A. Chaudhari, C. M. Mahajan, E. M. Abuassaj, P. P. Jagtap, P. B. Patil, and S. T. Bendre, Ferroelectric and dielectric properties of nanocrystalline BiFeO3 multiferroic ceramics synthesized by solution combustion method (SCM), Mater. Sci. Pol. 31(2), 221 (2013)
https://doi.org/10.2478/s13536-012-0088-y
138 S. D. Lakshmi and I. B. S. Banu, Multiferroism and magnetoelectric coupling in single-phase Yb and X (X=Nb, Mn, Mo) co-doped BiFeO3 ceramics, J. Sol- Gel Sci. Technol. 89(3), 713 (2019)
https://doi.org/10.1007/s10971-018-4901-x
139 C. Chakrabarti, Q. Fu, X. Chen, C. Li, B. Meng, Y. Qiu, and S. Yuan, Substitution driven enhancement of ferromagnetic, ferroelectric and leakage properties in multiferroic 0.7Bi1−xErxFeO3–0.3Bi0.5Na0.5TiO3 solid solutions, J. Sol–Gel Sci. Technol. 93(3), 587 (2020)
https://doi.org/10.1007/s10971-019-05178-x
140 A. S. Priya, I. B. Shameem Banu, M. Shahid Anwar, and S. Hussain, Studies on the multiferroic properties of (Zr, Cu) co-doped BiFeO3 prepared by sol–gel method, J. Sol–Gel Sci. Technol. 80(3), 579 (2016)
https://doi.org/10.1007/s10971-016-4144-7
141 L. G. Wang, C. M. Zhu, L. Chen, C. L. Li, and S. L. Yuan, Room-temperature magnetoelectric coupling study of multiferroic (1−x)(0.7BiFeO3– 0.3Bi0.5Na0.5TiO3)–xCoFe2O4 ceramics, J. Sol-Gel Sci. Technol. 82(1), 184 (2017)
https://doi.org/10.1007/s10971-016-4296-5
142 P. Ganguly, Influence of ionic radius of rareearths on the structural and electrical properties of Ba5RTi3Nb7O30 (R=rare-earth) ferroelectric ceramics, J. Rare Earths 33(12), 1310 (2015)
https://doi.org/10.1016/S1002-0721(14)60562-7
143 H. Dai, Z. Chen, T. Li, and Y. Li, Microstructure and properties of Sm-substituted BiFeO3 ceramics, J. Rare Earths 30(11), 1123 (2012)
https://doi.org/10.1016/S1002-0721(12)60191-4
144 S. F. Mansour, N. I. Abu-Elsaad, and T. A. Elmosalami, Magnetoelectric and magnetic studies of the Bi1−xCaxFeO3 multiferrioc system, Can. J. Phys. 92(5), 389 (2014)
https://doi.org/10.1139/cjp-2012-0282
145 D. H. Wang, W. C. Goh, M. Ning, and C. K. Ong, Effect of Ba doping on magnetic, ferroelectric, and magnetoelectric properties in mutiferroic BiFeO3 at room temperature, Appl. Phys. Lett. 88(21), 212907 (2006)
https://doi.org/10.1063/1.2208266
146 D. Kothari, V. R. Reddy, A. Gupta, V. Sathe, and A. Banerjee , Multiferroic properties of polycrystalline Bi1−xCaxFeO3, Appl. Phys. Lett. 91(20), 202505 (2007)
https://doi.org/10.1063/1.2806199
147 W. Luo, D. Wang, F. Wang, T. Liu, J. Cai, L. Zhang, and Y. Liu, Room-temperature simultaneously enhanced magnetization and electric polarization in BiFeO3 ceramic synthesized by magnetic annealing, Appl. Phys. Lett. 94(20), 202507 (2009)
https://doi.org/10.1063/1.3139780
148 A. Mukherjee, S. Basu, P. K. Manna, S. M. Yusuf, and M. Pal, Giant magnetodielectric and enhanced multiferroic properties of Sm doped bismuth ferrite nanoparticles, J. Mater. Chem. C 2(29), 5885 (2014)
https://doi.org/10.1039/c4tc00591k
149 D. Nanda, P. Kumar, B. Samanta, R. Sahu, and A. Singh, Structural, dielectric, ferroelectric and magnetic properties of (BNT-BT)-NCZF composites synthesized by a microwave assisted solid-state reaction route, J. Electron. Mater. 48(8), 5039 (2019)
https://doi.org/10.1007/s11664-019-07304-5
150 P. Bai, Y. Zeng, J. Han, Y. Wei, Y. Li, and M. Li, Effects of Bi2O3–B2O3–ZnO glass additive on structure, ferroelectric and dielectric properties of BiFeO3 ceramics, Ferroelectrics 555(1), 173 (2020)
https://doi.org/10.1080/00150193.2019.1691394
151 G. Gong, J. Zhou, Y. Duan, R. Chen, N. Sun, Y. Wang, and Y. Su, Co-existence of room temperature ferromagnetic and ferroelectric propertiesin Ba4SmFe0.5Nb9.5O30 ceramics, Ferroelectrics 555(1), 231 (2020)
https://doi.org/10.1080/00150193.2019.1691399
152 N. Sheoran, A. Kumar, V. Kumar, and A. Banerjee, Structural, optical, and multiferroic properties of yttrium Y3+-substituted BiFeO3 nanostructures, J. Supercond. Nov. Mater. 33(7), 2017 (2020)
https://doi.org/10.1007/s10948-019-05411-2
153 V. S. Puli, A. Kumar, N. Panwar, I. C. Panwar, and R. S. Katiyar, Transition metal modified bulk BiFeO3 with improved magnetization and linear magnetoelectric coupling, J. Alloys Compd. 509(32), 8223 (2011)
https://doi.org/10.1016/j.jallcom.2011.05.077
154 P. Gupta, L. K. Meher, and R. N. P. Choudhary, Structural, dielectric, impedance and modulus spectroscopy of BiLa2TiVO9 ceramic, Appl. Phys. A Mater. Sci. Process. 126(3), 187 (2020)
https://doi.org/10.1007/s00339-020-3341-y
155 R. F. Zhang, C. Y. Deng, L. Ren, Z. Li, and J. P. Zhou, Ferroelectric, ferromagnetic, and magnetoelectric properties of multiferroic Ni0.5Zn0.5Fe2O4–BaTiO3 composite ceramics, J. Electron. Mater. 43(4), 1043 (2014)
https://doi.org/10.1007/s11664-013-2904-5
156 P. Gupta, P. K. Mahapatra, and R. N. P. Choudhary, Structural, dielectric and electrical characteristics of lead-free ferroelectric ceramic: Bi2SmTiVO9, J. Electron. Mater. 47(9), 5458 (2018)
https://doi.org/10.1007/s11664-018-6444-x
157 P. Gupta, R. Padhee, P. K. Mahapatra, R. N. P. Choudhary, Structural, dielectric, impedance and modulus spectroscopy of ferroelectric ceramics, J. Mater. Sci. Mater. Electron. 28(22), 17344 (2017)
https://doi.org/10.1007/s10854-017-7667-y
158 M. Dhilip, K. Saravana Kumar, R. Ramesh Kumar, and V. Anbarasu, Intrinsic magnetic and ferroelectric behaviour of non-magnetic Al3+ ion substituted dysprosium iron garnet compounds, J. Electron. Mater. 48(12), 8243 (2019)
https://doi.org/10.1007/s11664-019-07675-9
159 R. Rameshkumar, T. Ramachanadran, K. Natarajan, M. Muralidharan, F. Hamed, and V. Kurapati, Fraction of rare-earth (Sm/Nd)-lanthanum ferrite-based perovskite ferroelectric and magnetic nanopowders, J. Electron. Mater. 48(3), 8243 (2019)
https://doi.org/10.1007/s11664-018-06897-7
160 G. Qian, C. Zhu, L. Wang, Z. Tian, C. Yin, C. Li, and S. Yuan, Enhanced ferromagnetic, ferroelectric, and dielectric properties in BiFeO3–SrTiO3–Bi0.5Na0.5TiO3 ceramics, J. Electron. Mater. 46(11), 6717 (2017)
https://doi.org/10.1007/s11664-017-5689-0
161 L. Singh, S. S. Yadava, B. C. Sin, U. S. Rai, K. D. Mandal, and Y. Lee, Comparative dielectric and ferroelectric characteristics of Bi0.5Na0.5TiO3, CaCu3Ti4O12, and 0.5Bi0.5Na0.5TiO3–0.5CaCu3Ti4O12 electroceramics, J. Electron. Mater. 45(6), 2662 (2016)
162 S. R. Das, R. N. P. Choudhary, P. Bhattacharya, R. S. Katiyar, P. Dutta, A. Manivannan, and M. S. Seehra, Structural and multiferroic properties of La-modified BiFeO3 ceramics, J. Appl. Phys. 101(3), 034104 (2007)
https://doi.org/10.1063/1.2432869
163 S. Thakur, K. Parmar, S. Sharma, and N. S. Negi, Structural, electric and ferroelectric properties of lead free 50Na0.5Bi0.5TiO3–50CoFe2O4 multiferroic particulate composite, Integr. Ferroelectr. 203, 37 (2019)
https://doi.org/10.1080/10584587.2019.1674952
164 M. Dewan and S. B. Majumder, Investigations on the multifunctionality of bismuth iron oxide, Trans. Indian Inst. Met. 72(8), 2072 (2019)
https://doi.org/10.1007/s12666-018-01554-3
165 X. Li, X. Wang, Y. Li, W. Mao, P. Li, T. Yang, and J. Yang, Structural, morphological and multiferroic properties of Pr and Co co-substituted BiFeO3 nanoparticles, Mater. Lett. 90, 152 (2013)
https://doi.org/10.1016/j.matlet.2012.09.038
166 Y. J. Yoo, J. S. Hwang, Y. P. Lee, J. S. Park, J. Y. Rhee, J. H. Kang, K. W. Lee, B. W. Lee, and M. S. Seo, Origin of enhanced multiferroic properties in Dy and Co co-doped BiFeO3 ceramics, J. Magn. Magn. Mater. 374, 669 (2015)
https://doi.org/10.1016/j.jmmm.2014.09.034
167 A. Mukherjee, S. Basu, P. K. Manna, S. M. Yusuf, and M. Pal, Enhancement of multiferroic properties of nanocrystalline BiFeO3 powder by Gd-doping, J. Alloys Compd. 598, 142 (2014)
https://doi.org/10.1016/j.jallcom.2014.01.245
168 M. S. Bernardo, T. Jardiel, M. Peiteado, F. J. Mompean, M. Garcia-Hernandez, M. A. Garcia, M. Villegas, and A. C. Caballero, Intrinsic compositional inhomogeneities in Bulk Ti-doped BiFeO3: Microstructure development and multiferroic properties, Chem. Mater. 25(9), 1533 (2013)
https://doi.org/10.1021/cm303743h
169 Y. K. Jun, S. B. Lee, M. Kim, S. H. Hong, J. W. Kim, and K. H. Kim, Dielectric and magnetic properties in Ta-substituted BiFeO3 ceramics, J. Mater. Res. 22(12), 3397 (2007)
https://doi.org/10.1557/JMR.2007.0421
170 K. M. Batoo, J. P. Labis, R. Sharma, and M. Singh, Ferroelectric and magnetic properties of Nd-doped Bi4−xFeTi3O12 nanoparticles prepared through the egg-white method, Nanoscale Res. Lett. 7(1), 511 (2012)
https://doi.org/10.1186/1556-276X-7-511
171 K. Singh, R. K. Kotnala, and M. Singh, Study of electric and magnetic properties of (Bi0.9Pb0.1) (Fe0.9Ti0.1)O3 nanomultiferroic system, Appl. Phys. Lett. 93(21), 212902 (2008)
https://doi.org/10.1063/1.3030989
172 A. Mukherjee, S. Basu, P. K. Manna, S. M. Yusuf, and M. Pal, Giant magnetodielectric and enhanced multiferroic properties of Sm doped bismuth ferrite nanoparticles, J. Mater. Chem. C 2(29), 5885 (2014)
https://doi.org/10.1039/c4tc00591k
173 D. Suastiyanti. S. Yatmani, and Y. N. Maulida, A chemical route to the synthesis of Bi1−xMgxFeO3 (x=0.1 and x=0.07) nanoparticle with enhanced electrical properties as multiferroic material, Int. J. Engn. Technol. Manag. Res. 5(6), 103 (2018)
https://doi.org/10.29121/ijetmr.v5.i6.2018.250
174 S. Matteppanavar, S. Rayaprol, K. Singh, V. R. Reddy, and B. Angadi, Evidence for magneto-electric and spin–lattice coupling in PbFe0.5Nb0.5O3 through structural and magneto-electric studies, J. Mater. Sci. 50(14), 4980 (2015)
https://doi.org/10.1007/s10853-015-9046-5
175 O. M. Hemeda, A. Tawfik, D. E. El Refaey, A. H. El-Sayed, and Sh. Mohamed, Electric and magnetic properties of [(NCZF)1−x(Na(ac.ac))x] nanocomposite, Open J. Appl. Sci. (Faisalabad) 7(10), 559 (2017)
https://doi.org/10.4236/ojapps.2017.710040
176 H. Y. Dai, Z. P. Chen, T. Li, R. Z. Xue, and J. Chen, Structural and electrical properties of bismuth ferrite ceramics sintered in different atmospheres, J. Supercond. Nov. Magn. 26(10), 3125 (2013)
https://doi.org/10.1007/s10948-013-2130-7
177 M. Atif, U. Younas, W. Khalid, Z. Ahmed, Z. Ali, and M. Nadeem, Impedance spectroscopy, ferroelectric and optical properties of cobalt doped Zn1−xCoxO nanoparticles, J. Mater. Sci. Mater. Electron. 31, 5253 (2020)
https://doi.org/10.1007/s10854-020-03085-4
178 S. K. Mohanty, D. P. Datta, B. Behera, H. S. Mohanty, B. Pati, and P. R. Das, Synthesis and dielectric spectroscopic study of lead-free ferroelectric ceramic K0.5Bi0.5TiO3NaNbO3, J. Mater. Sci. Mater. Electron. 31(4), 3245 (2020)
https://doi.org/10.1007/s10854-020-02873-2
179 S. Manzoor, S. Husain, A. Somvanshi, and M. Fatema, Structural, thermal, dielectric and multiferroic investigations on LaFeO3 composite systems, J. Mater. Sci. Mater. Electron. 31(10), 7811 (2020)
https://doi.org/10.1007/s10854-020-03320-y
180 M. Y. Shami, M. S. Awan, and M. Anis-ur-Rehman, Phase pure synthesis of BiFeO3 nanopowders using diverse prekursor via co-precipitation method, J. Alloys Compd. 509, 10139 (2011)
https://doi.org/10.1016/j.jallcom.2011.08.063
181 Y. A. Chaudhari, A. Singh, E. M. Abuassaj, R. Chatterjee, and S. T. Bendre, Multiferroic properties in BiFe1−xZnxO3 (x=0.1–0.2) ceramics by solution combustion method (SCM), J. Alloys Compd. 518, 51 (2012)
https://doi.org/10.1016/j.jallcom.2011.12.122
182 Md. R. Islam, R. H, Galib, A. Sharif, M. Hasan, Md. A. Zubair, and Md. F. Islam, Correlation of charge defects and morphology with magnetic andelectrical properties of Sr and Ta codoped BiFeO3, J. Alloys Compd. 688, 1186 (2016)
https://doi.org/10.1016/j.jallcom.2016.07.134
183 S. Godara, N. Sinha, G. Ray, and B. Kumar, Combined structural, electrical, magnetic and optical characterization of bismuth ferrite nanoparticles synthesized by auto-combustion route, J. Asian Ceram. Soc. 2(4), 416 (2014)
https://doi.org/10.1016/j.jascer.2014.09.001
184 P. Saxena, M. A. Dar, P. Sharma, A. Kumar, and D. Varshney, Structural, dielectric and ferroelectric properties of La and Ni codoped BiFeO3, AIP Conf. Proc. 1728, 020307 (2016)
https://doi.org/10.1063/1.4946358
185 L. S, P. D. Babu, and S. Srinath, Effect of La doping on dielectric and magnetic properties of room temperature multiferroic LuFeO3, AIP Conf. Proc. 1953, 120076 (2018)
186 A. S. Mahapatra, K. Mukhopadhyay, K. Mukhuti, and P. K. Chakrabartipabitra, Modulated magnetoelectric property of BiFeO3 incorporated in Co0.50Fe0.50Fe2O4, AIP Conf. Proc. 1591, 445 (2014)
https://doi.org/10.1063/1.4872633
187 N. Kumar, N. Panwar, B. Gahtori, N. Singh, H. Kishan, and V. P. S. Awan, Structural, dielectric and magnetic properties of Pr substituted Bi1−xPrxFeO3 (0≤x≤0.15) multiferroic compounds, J. Alloys Compd. 510(2), L29 (2010)
https://doi.org/10.1016/j.jallcom.2010.04.095
188 M. Ahmadzadeh, A. Ataie, and E. Mostafavi, The effects of mechanical activation energy on the solid-state synthesis process of BiFeO3, J. Alloys Compd. 622, 548 (2015)
https://doi.org/10.1016/j.jallcom.2014.10.135
189 Sarkar, S. Mukherjee, and S. Mukherjee, Structural, electrical and magnetic behaviour of undoped and nickel doped nanocrystalline bismuth ferrite by solution combustion route, Process. Appl. Ceram 9(1), 53 (2015)
https://doi.org/10.2298/PAC1501053S
190 Z. Branković, D. Luković Golić, A. Radojković, J. Ćirković, D. Pajić, Z. Marinković Stanojević, J. Xing, M. Radović, G. Li, and G. Branković, Spark plasma sintering of hydrothermally synthesized bismuth ferrite, Process. Appl. Ceram 10(4), 257 (2016)
https://doi.org/10.2298/PAC1604257B
191 Z. Li, Z. Wang, R. Gao, W. Cai, G. Chen, X. Deng, and C. Fu, Dielectric, ferroelectric and magnetic properties of Bi0.78La0.08Sm0.14Fe0.85Ti0.15O3 ceramics prepared at different sintering conditions, Process. Appl. Ceram. 12(4), 394 (2018)
https://doi.org/10.2298/PAC1804394L
192 M. Počcučca-Nešić, Z. Marinković Stanojević, P. Cotič Smole, A. Dapčević, N. Tasić, G. Branković, and Z. Branković, Processing and properties of pure antiferromagnetic h-YMnO3, Process. Appl. Ceram. 13(4), 427 (2019)
https://doi.org/10.2298/PAC1904427P
193 X. Qin, R. Xu, H. Wu, R. Gao, Z. Wang, G. Chen, C. Fu, X. Deng, and W. Ca, A comparative study on the dielectric and multiferroic properties of Co0.5Zn0.5Fe2O4/0.8Sr0.2TiO3 composite ceramics, Process. Appl. Ceram. 13(4), 349 (2019)
https://doi.org/10.2298/PAC1904349Q
194 M. A. Matin, M. M. Haman, M. N. Hossain, F. A. Mozahid, M. A. Hakim, M. H. Rizvi, and M. F. Islam, Effect of preparation routes on the crystal purity and properties of BiFeO3 nanoparticles, Trans. Electr. Electron. Mater. 20(6), 485 (2019)
https://doi.org/10.1007/s42341-019-00140-8
195 X. Luo, H. Wang, R. Gao, X. Li, J. Zhang, and H. Ban, Effects of molar ratio on dielectric, ferroelectric and magnetic properties of Ni0.5Zn0.5Fe2O4–BaTiO3 composite ceramics, Process. Appl. Ceram 14(2), 91 (2020)
https://doi.org/10.2298/PAC2002091L
196 M. M. Rhaman, M. A. Matin, M. N. Hossain, M. N. I. Khan, M. A. Hakim, and M. F. Islam, Ferromagnetic, electric, and ferroelectric properties of samarium and cobalt co-doped bismuth ferrite nanoparticles, J. Phys. Chem. Solids 147, 109607 (2020)
https://doi.org/10.1016/j.jpcs.2020.109607
197 A. Sagdeo, P. Mondal, A. Upadhyay, A. K. Sinha, A. K. Srivastava, S. M. Gupta, P. Chowdhury, T. Ganguli, and S. K. Deb, Correlation of microstructural and physical properties in bulk BiFeO3 prepared by rapid liquid-phase sintering, Solid State Sci. 18, 1 (2013)
https://doi.org/10.1016/j.solidstatesciences.2012.12.017
198 K. Verma, M. K. Shamim, S. Kumar, and S. Sharma, Role of ferrite phase on the structural, ferroelectric and magnetic properties of (1 − x) BCT–xCZFO composites, Mater. Chem. Phys. 255, 123284 (2020)
https://doi.org/10.1016/j.matchemphys.2020.123284
199 F. Sehar, S. Anjum, Z. Mustafa, and S. Atiq, Coexistence of ferroelectric and ferromagnetic properties of Bi+3 substituted M-type barium hexaferrites, J. Supercond. Nov. Mater 33(7), 2073 (2020)
https://doi.org/10.1007/s10948-020-05452-y
200 S. Taran, B. Biswas, and H. D. Yang, Structural, magnetic, and ferroelectric properties of Zr-doped Y1−xZrxCrO3 bulk polycrystalline system, J. Supercond. Nov. Mater 33(8), 2483 (2020)
https://doi.org/10.1007/s10948-020-05496-0
201 K. Parida and N. P. Choudhary, Structural, electrical, and magnetic characteristics of chemically synthesized lead-free double perovskite: BiMgFeCeO6, J. Supercond. Nov. Mater 33, 3493 (2020)
https://doi.org/10.1007/s10948-020-05605-z
202 K. S. Samantaray, R. Amin, E. G. Rini, and S. Sen, Fedoped Na0.47Bi0.47Ba0.06Ti0.98−xV0.02FexO3: Structure correlated vibrational, optical and electrical properties, J. Alloys Compd. 849, 156503 (2020)
https://doi.org/10.1016/j.jallcom.2020.156503
203 M. Sufyan, Z. Lu, Z. Chen, X. Wang, and S. K. Abbas, Multiferroic characterization of 3-phase (1 − x) (0.7BiFeO3–0.3CoFe2O4)–xPb(Zr, Ti)O3 composites withmagnetically driven polarization, J. Alloys Compd. 849, 156681 (2020)
https://doi.org/10.1016/j.jallcom.2020.156681
204 S. Satapathy, G. Prudhvi, A. A. Khan, P. Deshmukh, A. Ahlawat, K. R. S. P. Meher, and A. K. Karnal, MgFe2O4/(Ba0.85Ca0.15) (Zr0.1Ti0.9)O3 lead free ceramic composite: A study onmultiferroic and magnetoelectric coupling properties at room temperature, J. Alloys Compd. 853, 156960 (2021)
https://doi.org/10.1016/j.jallcom.2020.156960
205 S. Sharma, J. M. Siqueiros, and O. R. Herrera, Structural, dielectric, ferroelectric and optical properties of Er doped BiFeO3 nanoparticles, J. Alloys Compd. 853, 156979 (2021)
https://doi.org/10.1016/j.jallcom.2020.156979
206 M. Liu, H. Yu, and Z. Liu, A pair of homochiral trinuclear Zn(II) clusters exhibiting unusual ferroelectric behaviour at high temperature, CrystEngComm 21(14), 2355 ( 2019)
https://doi.org/10.1039/C9CE00034H
207 L. Yu, X.-H. Hua, X.-J. Jiang, L. Qin, X.-Z. Yan, L.-H. Luo, and L. Han, Histidine-controlled homochiral and ferroelectric metal-organic frameworks, CrystEngComm 15, 687 ( 2015)
https://doi.org/10.1021/cg5013796
208 Y. Wang, Y. Qi, V. A. Blatov, J. Zheng, Q. Li, and C. Zhang, Two new zinc(II) coordination complexes with helix characteristics showing both interpretation and self-catenation features: A platform for the synthesis of chiral and catenated structures assembled by lenghmodulated dicarboxylates, Dalton Trans. 43, 15151 ( 2014)
https://doi.org/10.1039/C4DT01431F
209 J. Hu, L. Huang, X. Yao, L. Qin, Y. Li, Z. Guo, H. Zheng, and Z. Xue, Six new metal-organic frameworks based on polycarboxylate acids and V-shaped imidazole-based synthon: Synthesis, crystal structures, and properties, Inorg. Chem. 50(6), 2404 ( 2011)
https://doi.org/10.1021/ic102207n
210 H. Zhou, G.-X. Liu, X.-F. Wang, and Y. Wang, Three cobalt(II) coordination polymers based on V-shaped aromatic polycarboxylates and rigid bis(imidazole) ligand: Synthesis, crystal structures, physical properties and theoretical studies, CrystEngComm 15, 1377 ( 2013)
https://doi.org/10.1039/c2ce26606g
211 H. Zhao, Q. Ye, Z.-R. Qu, D.-W. Fu, R.-G. Xiong, S. D. Huang, and P. W. H. Chan, Huge deuterated effect on permittivity on a metal-organic frameworks, Chemistry 14(4), 1164 (2014)
https://doi.org/10.1002/chem.200701044
212 M. D. Zhang, Y. L. Li, Z. Z. Shi, H. G. Zheng, and J. Ma, A pair of 3D enantiotopic zinc(II) complexes based on two asymmetric achiral ligands, Dalton Trans. 46(43), 14779 ( 2017)
https://doi.org/10.1039/C7DT03205F
213 J. K. H. Hui, H. Kishida, K. Ishiba, K. Takemasu, M. Morikawa, and N. Kimizuka, Ferroelectric coordination polymers self-assembled from mesogenic Zinc(II) porphyrin and dipolar bridging ligands, Chemistry 22(40), 14213 ( 2016)
https://doi.org/10.1002/chem.201602175
214 X.-Q. Yao, J.-S. Hu, M.-D. Zhang, L. Qin, Y.-Z. Li, Z.-J. Guo, and H.-G. Zheng, Chiral and noncentrosymmetric metal−organic frameworks featuring a 2D→3D parallel/parallel inclined subpolycatenation, Cryst. Eng. Comm. 13, 3381 ( 2013)
https://doi.org/10.1021/cg400182u
215 Q. Huang, J. Yu, J. Gao, X. Rao, X. Yang, Y. Cui, C. Wu, Z. Zhang, S. Xiang, B. Chen, and G. Qian, Two chiral nonlinear optical coordination networks based on interwoven two-dimensional square grids of double helices, Cryst. Growth Des. 10(10), 5291 ( 2010)
https://doi.org/10.1021/cg101135r
216 R. Kumari, R. Seera, A. De, R. Ranjan, and T. N. G. Row, Organic multi-functional materials: Second harmonic, ferroelectric and dielectric properties in Nbenzylideneaniline analogues, Cryst. Growth Des. 19(10), 5934 ( 2019)
https://doi.org/10.1021/acs.cgd.9b00985
217 G. X. Wang, Z. Xing, L. Z. Chen, and G. F. Han, A ferroelectric olefin–copper(I) organometallic polymer with flexible organic ligand(R)-MbVBP, J. Mol. Struct. 1091, 16 ( 2015)
https://doi.org/10.1016/j.molstruc.2015.02.043
218 M. Yu, F. Xuan, J. Lia, and G.-X. Liu, Four Zinc(II) coordination polymers with dicarboxylate and Tri(4- pyridylphenyl)amine ligand: Syntheses, crystal structures and physical properties, J. Mol. Struct. 1199(5), 127005 ( 2020)
https://doi.org/10.1016/j.molstruc.2019.127005
219 D. Feng, Y. Che, and J. Zheng, An acentric lanthanide-formate complex: Synthesis, structure, ferroelectric and magnetic properties, J. Rare Earths 30(8), 798 ( 2012)
https://doi.org/10.1016/S1002-0721(12)60133-1
220 D.-W. Fu, H.-Y. Ye, Q. Ye, K.-J. Pan, and R.-G. Xiong, Ferroelectric metal–organic coordination polymer with a high dielectric constant, Dalton Trans. 7, 874 ( 2008)
https://doi.org/10.1039/B714293E
221 Kumari, R. Seera, A. De, R. Ranjan, and T. N. Guru Row, Organic multifunctional materials: Second harmonic, ferroelectric, and dielectric properties in N benzylideneaniline analogues, Cryst. Growth Des. 19(10), 5934 ( 2019)
https://doi.org/10.1021/acs.cgd.9b00985
222 X. Xu, M. Liu, and Z. Liu, Crystal structures and ferroelectric properties of homochiral metal organic frameworks constructed from a single chiral ligand, Dalton Trans. 49(30), 10402 ( 2020)
https://doi.org/10.1039/D0DT01323D
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed