Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (5): 53504   https://doi.org/10.1007/s11467-021-1072-y
  本期目录
Toplayer-dependent crystallographic orientation imaging in the bilayer two-dimensional materials with transverse shear microscopy
Sabir Hussain1,2,4, Rui Xu1, Kunqi Xu3, Le Lei1, Shuya Xing1, Jianfeng Guo1, Haoyu Dong1, Adeel Liaqat2,4, Rashid Iqbal2,4, Muhammad Ahsan Iqbal2,4, Shangzhi Gu1, Feiyue Cao1, Yan Jun Li5, Yasuhiro Sugawara5, Fei Pang1, Wei Ji1, Liming Xie2,4, Shanshan Chen1(), Zhihai Cheng1()
1. Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
2. CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
3. Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
4. University of Chinese Academy of Sciences, Beijing 100039, China
5. Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
 全文: PDF(1664 KB)  
Abstract

Nanocontact properties of two-dimensional (2D) materials are closely dependent on their unique nanomechanical systems, such as the number of atomic layers and the supporting substrate. Here, we report a direct observation of toplayer-dependent crystallographic orientation imaging of 2D materials with the transverse shear microscopy (TSM). Three typical nanomechanical systems, MoS2 on the amorphous SiO2/Si, graphene on the amorphous SiO2/Si, and MoS2 on the crystallized Al2O3, have been investigated in detail. This experimental observation reveals that puckering behaviour mainly occurs on the top layer of 2D materials, which is attributed to its direct contact adhesion with the AFM tip. Furthermore, the result of crystallographic orientation imaging of MoS2/SiO2/Si and MoS2/Al2O3 indicated that the underlying crystalline substrates almost do not contribute to the puckering effect of 2D materials. Our work directly revealed the top layer dependent puckering properties of 2D material, and demonstrate the general applications of TSM in the bilayer 2D systems.

Key words2D materials    toplayer-dependent crystallographic orientation imaging    nanomechanical contact properties    transverse shear microscopy
收稿日期: 2021-02-17      出版日期: 2021-10-08
Corresponding Author(s): Shanshan Chen,Zhihai Cheng   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(5): 53504.
Sabir Hussain, Rui Xu, Kunqi Xu, Le Lei, Shuya Xing, Jianfeng Guo, Haoyu Dong, Adeel Liaqat, Rashid Iqbal, Muhammad Ahsan Iqbal, Shangzhi Gu, Feiyue Cao, Yan Jun Li, Yasuhiro Sugawara, Fei Pang, Wei Ji, Liming Xie, Shanshan Chen, Zhihai Cheng. Toplayer-dependent crystallographic orientation imaging in the bilayer two-dimensional materials with transverse shear microscopy. Front. Phys. , 2021, 16(5): 53504.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1072-y
https://academic.hep.com.cn/fop/CN/Y2021/V16/I5/53504
1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
2 C. Dang, M. Guan, S. Hussain, W. Wen, Y. Zhu, L. Jiao, S. Meng, and L. Xie, Phase transition photodetection in charge density wave tantalum disulfide, Nano Lett.20(9), 6725 (2020)
https://doi.org/10.1021/acs.nanolett.0c02613
3 A. Gupta, T. Sakthivel, and S. Seal, Recent development in 2D materials beyond graphene, Prog. Mater. Sci. 73, 44 (2015)
https://doi.org/10.1016/j.pmatsci.2015.02.002
4 S. Zhang, T. Ma, A. Erdemir, and Q. Li, Tribology of twodimensional materials: From mechanisms to modulating strategies, Mater. Today 26, 67 (2019)
https://doi.org/10.1016/j.mattod.2018.12.002
5 S. Li, Q. Li, R. W. Carpick, P. Gumbsch, X. Z. Liu, X. Ding, J. Sun, and J. Li, The evolving quality of frictional contact with graphene, Nature539(7630), (2016)
https://doi.org/10.1038/nature20135
6 R. Wang, X. G. Ren, Z. Yan, L. J. Jiang, W. E. I. Sha, and G. C. Shan, Graphene based functional devices: A short review, Front. Phys. 14(1), 13603 (2019)
https://doi.org/10.1007/s11467-018-0859-y
7 J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of twodimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)
https://doi.org/10.1007/s11467-018-0812-0
8 S. Hussain, R. Xu, K. Xu, L. Lei, L. Meng, Z. Zheng, S. Xing, J. Guo, H. Dong, A. Liaqat, M. A. Iqbal, Y. J. Li, Y. Sugawara, F. Pang, W. Ji, L. Xie, and Z. Cheng, Straininduced hierarchical ripples in MoS2 layers investigated by atomic force microscopy, Appl. Phys. Lett. 117(15), 153102 (2020)
https://doi.org/10.1063/5.0023405
9 R. Xu, F. Pang, Y. Pan, Y. Lun, L. Meng, Z. Zheng, K. Xu, L. Lei, S. Hussain, Y. J. Li, Y. Sugawara, J. Hong, W. Ji, and Z. Cheng, Atomically asymmetric inversion scales up to mesoscopic single-crystal monolayer flakes, ACS Nano 14(10), 13834 (2020)
https://doi.org/10.1021/acsnano.0c06198
10 J. H. Kim, J. H. Jeong, N. Kim, R. Joshi, and G. H. Lee, Mechanical properties of two-dimensional materials and their applications, J. Phys. D Appl. Phys. 52(8), 083001 (2019)
https://doi.org/10.1088/1361-6463/aaf465
11 S. Ye, K. Xu, L. Lei, S. Hussain, F. Pang, X. Liu, Z. Zheng, W. Ji, X. Shi, R. Xu, L. Xie, and Z. Cheng, Nanoscratch on single-layer MoS2 crystal by atomic force microscopy: semi-circular to periodical zigzag cracks, Mater. Res. Express6(2), 025048 (2018)
https://doi.org/10.1088/2053-1591/aaf14f
12 H. Li, X. Duan, X. Wu, X. Zhuang, H. Zhou, Q. Zhang, X. Zhu, W. Hu, P. Ren, P. Guo, L. Ma, X. Fan, X. Wang, J. Xu, A. Pan, and X. Duan, Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties, J. Am. Chem. Soc. 136(10), 3756 (2014)
https://doi.org/10.1021/ja500069b
13 W. Chen, E. J. Santos, W. Zhu, E. Kaxiras, and Z. Zhang, Tuning the electronic and chemical properties of monolayer MoS2 adsorbed on transition metal substrates, Nano Lett. 13(2), 509 (2013)
https://doi.org/10.1021/nl303909f
14 Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol.7(11), 699 (2012)
https://doi.org/10.1038/nnano.2012.193
15 M. A. Iqbal, A. Liaqat, S. Hussain, X. Wang, M. Tahir, Z. Urooj, and L. Xie, Ultralow-transition-energy organic complex on graphene for high-performance shortwave infrared photodetection, Adv. Mater. 32(37), 2002628 (2020)
https://doi.org/10.1002/adma.202002628
16 B. Tang, S. Hussain, R. Xu, Z. Cheng, J. Liao, and Q. Chen, Novel type of synaptic transistors based on a ferroelectric semiconductor channel, ACS Appl. Mater. Interfaces 12(22), 24920 (2020)
https://doi.org/10.1021/acsami.9b23595
17 M. A. Iqbal, M. Cui, A. Liaqat, R. Faiz, M. Hossain, X. Wang, S. Hussain, C. Dang, H. Liu, W. Wen, J. Wu, and L. Xie, Organic charge transfer complexes on graphene with ultrahigh near infrared photogain, Nanotechnology30(25), 254003 (2019)
https://doi.org/10.1088/1361-6528/ab0608
18 Y. Sun, J. Pan, Z. Zhang, K. Zhang, J. Liang, W. Wang, Z. Yuan, Y. Hao, B. Wang, J. Wang, Y. Wu, J. Zheng, L. Jiao, S. Zhou, K. Liu, C. Cheng, W. Duan, Y. Xu, Q. Yan, and K. Liu, Elastic properties and fracture behaviors of biaxially deformed, polymorphic MoTe2, Nano Lett. 19(2), 761 (2019)
https://doi.org/10.1021/acs.nanolett.8b03833
19 V. Kalihari, G. Haugstad, and C. D. Frisbie, Distinguishing elastic shear deformation from friction on the surfaces of molecular crystals, Phys. Rev. Lett. 104(8), 086102 (2010)
https://doi.org/10.1103/PhysRevLett.104.086102
20 A. W. Tsen, L. Brown, M. P. Levendorf, F. Ghahari, P. Y. Huang, R. W. Havener, C. S. Ruiz-Vargas, D. A. Muller, P. Kim, and J. Park, Tailoring electrical transport across grain boundaries in polycrystalline graphene, Science 336(6085), 1143 (2012)
https://doi.org/10.1126/science.1218948
21 C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321(5887), 385 (2008)
https://doi.org/10.1126/science.1157996
22 H. Wang, E. J. Sandoz-Rosado, S. H. Tsang, J. Lin, M. Zhu, G. Mallick, Z. Liu, and E. H. T. Teo, Elastic properties of 2D ultrathin tungsten nitride crystals grown by chemical vapor deposition, Adv. Funct. Mater. 29(31), 1902663 (2019)
https://doi.org/10.1002/adfm.201902663
23 S. Zhang, Y. Hou, S. Li, L. Liu, Z. Zhang, X. Q. Feng, and Q. Li, Tuning friction to a superlubric state via inplane straining, Proc. Natl. Acad. Sci. USA 116(49), 24452 (2019)
https://doi.org/10.1073/pnas.1907947116
24 L. Lei, R. Xu, S. Ye, X. Wang, K. Xu, S. Hussain, Y. J. Li, Y. Sugawara, L. Xie, W. Ji, and Z. Cheng, Local characterization of mobile charge carriers by two electrical AFM modes: Multi-harmonic EFM versus sMIM, J. Chem. Phys. 2, 025013 (2018)
https://doi.org/10.1088/2399-6528/aaa85f
25 K. Xu, S. Ye, L. Lei, L. Meng, S. Hussain, Z. Zheng, H. Zeng, W. Ji, R. Xu, and Z. Cheng, Dynamic interfacial mechanical-thermal characteristics of atomically thin twodimensional crystals, Nanoscale 10(28), 13548 (2018)
https://doi.org/10.1039/C8NR03586E
26 Z. Zheng, R. Xu, S. Ye, S. Hussain, W. Ji, P. Cheng, Y. Li, Y. Sugawara, and Z. Cheng, High harmonic exploring on different materials in dynamic atomic force microscopy, Sci. China Technol. Sci. 61(3), 446 (2018)
https://doi.org/10.1007/s11431-017-9161-4
27 Z. Y. Zheng, R. Xu, K. Q. Xu, S. L. Ye, F. Pang, L. Lei, S. Hussain, X. M. Liu, W. Ji, and Z. Cheng, Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy, Front. Phys. 15(2), 23601 (2020)
https://doi.org/10.1007/s11467-019-0933-0
28 M. Campione and E. Fumagalli, Friction anisotropy of the surface of organic crystals and its impact on scanning force microscopy, Phys. Rev. Lett. 105(16), 166103 (2010)
https://doi.org/10.1103/PhysRevLett.105.166103
29 J. S. Choi, J. S. Kim, I. S. Byun, D. H. Lee, M. J. Lee, B. H. Park, C. Lee, D. Yoon, H. Cheong, K. H. Lee, Y. W. Son, J. Y. Park, and M. Salmeron, Friction anisotropydriven domain imaging on exfoliated monolayer graphene, Science 333(6042), 607 (2011)
https://doi.org/10.1126/science.1207110
30 Q. Li, C. Lee, R. W. Carpick, and J. Hone, Substrate effect on thickness-dependent friction on graphene, Phys. Status Solidi. B 247(5), 2909–2914 (2010)
https://doi.org/10.1002/pssb.201000555
31 K. Xu, Y. Pan, S. Ye, L. Lei, S. Hussain, Q. Wang, Z. Yang, X. Liu, W. Ji, R. Xu, and Z. Cheng, Shear anisotropy-driven crystallographic orientation imaging in flexible hexagonal two-dimensional atomic crystals, Appl. Phys. Lett. 115(6), 063101 (2019)
https://doi.org/10.1063/1.5096418
32 X. Xu, T. Schultz, Z. Qin, N. Severin, B. Haas, S. Shen, J. N. Kirchhof, A. Opitz, C. T. Koch, K. Bolotin, J. P. Rabe, G. Eda, and N. Koch, Microstructure and elastic constants of transition metal dichalcogenide monolayers from friction and shear force microscopy, Adv. Mater.30(39), 1803748 (2018)
https://doi.org/10.1002/adma.201803748
33 S. Hussain, K. Xu, S. Ye, L. Lei, X. Liu, R. Xu, L. Xie, and Z. Cheng, Local electrical characterization of twodimensional materials with functional atomic force microscopy, Front. Phys. 14(3), 33401 (2019)
https://doi.org/10.1007/s11467-018-0879-7
34 J. S. Choi, Y. J. Chang, S. Woo, Y. W. Son, Y. Park, M. J. Lee, I. S. Byun, J. S. Kim, C. G. Choi, A. Bostwick, E. Rotenberg, and B. H. Park, Correlation between micrometer-scale ripple alignment and atomic-scale crystallographic orientation of monolayer graphene, Sci. Rep.4(1), 7263 (2015)
https://doi.org/10.1038/srep07263
35 J. S. Choi, J. S. Kim, I. Byun, D. H. Lee, I. R. Hwang, B. H. Park, T. Choi, J. Y. Park, and M. Salmeron, Facile characterization of ripple domains on exfoliated graphene, Rev. Sci. Instrum. 83(7), 073905 (2012)
https://doi.org/10.1063/1.4737428
36 H. Ying, W. Wang, W. Liu, L. Wang, and S. Chen, Layerby-layer synthesis of bilayer and multilayer graphene on Cu foil utilizing the catalytic activity of cobalt nano-powders, Carbon 146, 549 (2019)
https://doi.org/10.1016/j.carbon.2019.02.024
37 C. Lee, Q. Li, W. Kalb, X. Z. Liu, H. Berger, R. W. Carpick, and J. Hone, Frictional characteristics of atomically thin sheets, Science 328(5974), 76 (2010)
https://doi.org/10.1126/science.1184167
38 H. Q. Zhao, X. Mao, D. Zhou, S. Feng, X. Shi, Y. Ma, X. Wei, and Y. Mao, Bandgap modulation of MoS2 monolayer by thermal annealing and quick cooling, Nanoscale 8(45), 18995 (2016)
https://doi.org/10.1039/C6NR05638E
39 M. R. Vazirisereshk, K. Hasz, M. Q. Zhao, A. T. C. Johnson, R. W. Carpick, and A. Martini, Nanoscale friction behavior of transition-metal dichalcogenides: Role of the chalcogenide, ACS Nano 14(11), 16013 (2020)
https://doi.org/10.1021/acsnano.0c07558
40 Y. Zheng, J. Chen, M. F. Ng, H. Xu, Y. P. Liu, A. Li, S. J. O’ Shea, T. Dumitrica, and K. P. Loh, Quantum mechanical rippling of a MoS2 monolayer controlled by interlayer bilayer coupling, Phys. Rev. Lett. 114(6), 065501 (2015)
https://doi.org/10.1103/PhysRevLett.114.065501
41 H. Li, J. Tao, Y. Luo, L. Deng, and Z. Den, Exploring the evolution of passenger flow and travel time reliability with the expanding process of metro system using smartcard data, J. Harbin Inst. Technol. 26(1), 5 (2019)
[1] Supporting Information Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed