Geometric heat pump: Controlling thermal transport with time-dependent modulations
Zi Wang1, Luqin Wang1, Jiangzhi Chen1, Chen Wang2(), Jie Ren1()
1. Center for Phononics and Thermal Energy Science, China-EU Joint Lab on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China 2. Department of Physics, Zhejiang Normal University, Jinhua 321004, China
The second law of thermodynamics dictates that heat simultaneously flows from the hot to cold bath on average. To go beyond this picture, a range of works in the past decade show that, other than the average dynamical heat flux determined by instantaneous thermal bias, a non-trivial flux contribution of intrinsic geometric origin is generally present in temporally driven systems. This additional heat flux provides a free lunch for the pumped heat and could even drive heat against the bias. We review here the emergence and development of this so called “geometric heat pump”, originating from the topological geometric phase effect, and cover various quantum and classical transport systems with different internal dynamics. The generalization from the adiabatic to the non-adiabatic regime and the application of control theory are also discussed. Then, we briefly discuss the symmetry restriction on the heat pump effect, such as duality, supersymmetry and time-reversal symmetry. Finally, we examine open problems concerning the geometric heat pump process and elucidate their prospective significance in devising thermal machines with high performance.
P. Hänggi and F. Marchesoni, Artificial Brownian motors: Controlling transport on the nanoscale, Rev. Mod. Phys. 81(1), 387 (2009) https://doi.org/10.1103/RevModPhys.81.387
T. H. Oosterkamp, L. P. Kouwenhoven, A. E. A. Koolen, N. C. van der Vaart, and C. J. P. M. Harmans, Photon sidebands of the ground state and first excited state of a quantum dot, Phys. Rev. Lett. 78(8), 1536 (1997) https://doi.org/10.1103/PhysRevLett.78.1536
J. Ren, V. Chernyak, and N. Sinitsyn, Duality and fluctuation relations for statistics of currents on cyclic graphs, J. Stat. Mech. 2011(05), P05011 (2011) https://doi.org/10.1088/1742-5468/2011/05/P05011
S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L. Wang, M. Troyer, and Y. Takahashi, Topological Thou-less pumping of ultracold fermions, Nat. Phys. 12(4), 296 (2016) https://doi.org/10.1038/nphys3622
15
N. A. Sinitsyn and I. Nemenman, Universal geometric the-ory of mesoscopic stochastic pumps and reversible ratchets, Phys. Rev. Lett. 99(22), 220408 (2007) https://doi.org/10.1103/PhysRevLett.99.220408
16
N. Sinitsyn, The stochastic pump effect and geometric phases in dissipative and stochastic systems, J. Phys. A Math. Theor. 42(19), 193001 (2009) https://doi.org/10.1088/1751-8113/42/19/193001
J. Ren, P. Hänggi, and B. Li, Berry-phase-induced heat pumping and its impact on the fluctuation theorem, Phys. Rev. Lett. 104(17), 170601 (2010) https://doi.org/10.1103/PhysRevLett.104.170601
22
J. Ren, S. Liu, and B. Li, Geometric heat flux for classical thermal transport in interacting open systems, Phys. Rev. Lett. 108(21), 210603 (2012) https://doi.org/10.1103/PhysRevLett.108.210603
23
T. Chen, X. B. Wang, and J. Ren, Dynamic control of quantum geometric heat flux in a nonequilibrium spin-boson model, Phys. Rev. B 87(14), 144303 (2013) https://doi.org/10.1103/PhysRevB.87.144303
24
C. Wang, J. Ren, and J. Cao, Unifying quantum heat transfer in a nonequilibrium spin-boson model with full counting statistics, Phys. Rev. A 95(2), 023610 (2017) https://doi.org/10.1103/PhysRevA.95.023610
D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Tor-rontegui, S. Martínez-Garaot, and J. G. Muga, Shortcuts to adiabaticity: Concepts, methods, and applications, Rev. Mod. Phys. 91(4), 045001 (2019) https://doi.org/10.1103/RevModPhys.91.045001
28
D. d’Alessandro, Introduction to Quantum Control and Dynamics, CRC Press, 2007
29
K. Funo, N. Lambert, F. Nori, and C. Flindt, Shortcuts to adiabatic pumping in classical stochastic systems, Phys. Rev. Lett. 124(15), 150603 (2020) https://doi.org/10.1103/PhysRevLett.124.150603
A. Kamenev, Field Theory of Non-Equilibrium Systems, Cambridge University Press, 2011
32
L. S. Levitov and G. B. Lesovik, Charge distribution in quantum shot noise, JETP Lett. 58, 230 (1993)
33
P. L. Kelley and W. H. Kleiner, Theory of electromagnetic field measurement and photoelectron counting, Phys. Rev. 136(2A), A316 (1964) https://doi.org/10.1103/PhysRev.136.A316
34
C. W. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Op-tics, Springer Science & Business Media, 2004
P. Stegmann, J. König, and S. Weiss, Coherent dynamics in stochastic systems revealed by full counting statistics, Phys. Rev. B 98(3), 035409 (2018) https://doi.org/10.1103/PhysRevB.98.035409
37
M. Esposito, U. Harbola, and S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems, Rev. Mod. Phys. 81(4), 1665 (2009) https://doi.org/10.1103/RevModPhys.81.1665
38
M. Campisi, P. Hänggi, and P. Talkner, Quantum fluctuation relations: Foundations and applications, Rev. Mod. Phys. 83(3), 771 (2011) https://doi.org/10.1103/RevModPhys.83.771
P. Talkner and P. Hänggi, Statistical mechanics and ther-modynamics at strong coupling: Quantum and classical, Rev. Mod. Phys. 92(4), 041002 (2020) https://doi.org/10.1103/RevModPhys.92.041002
44
M. Silaev, T. T. Heikkilä, and P. Virtanen, Lindblad-equation approach for the full counting statistics of work and heat in driven quantum systems, Phys. Rev. E 90(2), 022103 (2014) https://doi.org/10.1103/PhysRevE.90.022103
45
C. W. Gardiner, et al., Handbook of Stochastic Methods, Vol. 3, Springer Berlin, 1985
46
S. Larocque, E. Pinsolle, C. Lupien, and B. Reulet, Shot noise of a temperature-biased tunnel junction, Phys. Rev. Lett. 125(10), 106801 (2020) https://doi.org/10.1103/PhysRevLett.125.106801
47
O. Maillet, P. A. Erdman, V. Cavina, B. Bhandari, E. T. Mannila, J. T. Peltonen, A. Mari, F. Taddei, C. Jarzyn-ski, V. Giovannetti, and J. P. Pekola, Optimal probabilis-tic work extraction beyond the free energy difference with a single-electron device, Phys. Rev. Lett. 122(15), 150604 (2019) https://doi.org/10.1103/PhysRevLett.122.150604
J. Ren, The third way of thermal-electric conversion be-yond Seebeck and pyroelectric effects, arXiv: 1402.3645 (2014) https://doi.org/10.2172/1120714
51
N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Phononics: Manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys. 84(3), 1045 (2012) https://doi.org/10.1103/RevModPhys.84.1045
52
M. Josefsson, A. Svilans, A. M. Burke, E. A. Hoffmann, S. Fahlvik, C. Thelander, M. Leijnse, and H. Linke, A quantum-dot heat engine operating close to the thermo-dynamic efficiency limits, Nat. Nanotechnol. 13(10), 920 (2018) https://doi.org/10.1038/s41565-018-0200-5
53
S. Seah, S. Nimmrichter, and V. Scarani, Maxwell’s lesser demon: A quantum engine driven by pointer measure-ments, Phys. Rev. Lett. 124(10), 100603 (2020) https://doi.org/10.1103/PhysRevLett.124.100603
A. Marcos-Vicioso, C. Löpez-Jurado, M. Ruiz-Garcia, and R. Sánchez, Thermal rectification with interacting elec-tronic channels: Exploiting degeneracy, quantum super-positions, and interference, Phys. Rev. B 98(3), 035414 (2018) https://doi.org/10.1103/PhysRevB.98.035414
56
W. Nie, G. Li, X. Li, A. Chen, Y. Lan, and S. Y. Zhu, Berry-phase-like effect of thermo-phonon transport in optomechanics, Phys. Rev. A 102(4), 043512 (2020) https://doi.org/10.1103/PhysRevA.102.043512
D. Torrent, O. Poncelet, and J. C. Batsale, Nonrecipro-cal thermal material by spatiotemporal modulation, Phys. Rev. Lett. 120(12), 125501 (2018) https://doi.org/10.1103/PhysRevLett.120.125501
L. Arrachea, E. R. Mucciolo, C. Chamon, and R. B. Capaz, Microscopic model of a phononic refrigerator, Phys. Rev. B 86(12), 125424 (2012) https://doi.org/10.1103/PhysRevB.86.125424
H. Li, L. J. Fernández-Alcázar, F. Ellis, B. Shapiro, and T. Kottos, Adiabatic thermal radiation pumps for thermal photonics, Phys. Rev. Lett. 123(16), 165901 (2019) https://doi.org/10.1103/PhysRevLett.123.165901
64
B. Bhandari, P. T. Alonso, F. Taddei, F. von Oppen, R. Fazio, and L. Arrachea, Geometric properties of adiabatic quantum thermal machines, Phys. Rev. B 102(15), 155407 (2020) https://doi.org/10.1103/PhysRevB.102.155407
65
L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-relativistic Theory, Vol. 3, Elsevier, 2013
66
J. Ohkubo and T. Eggel, Noncyclic and nonadiabatic ge-ometric phase for counting statistics, J. Phys. A Math. Theor. 43(42), 425001 (2010) https://doi.org/10.1088/1751-8113/43/42/425001
67
T. Harada and S. I. Sasa, Equality connecting energy dissi-pation with a violation of the fluctuation-response relation, Phys. Rev. Lett. 95(13), 130602 (2005) https://doi.org/10.1103/PhysRevLett.95.130602
68
E. Lippiello, M. Baiesi, and A. Sarracino, Nonequilib-rium fluctuation-dissipation theorem and heat production, Phys. Rev. Lett. 112(14), 140602 (2014) https://doi.org/10.1103/PhysRevLett.112.140602
M. Kolodrubetz, D. Sels, P. Mehta, and A. Polkovnikov, Geometry and non-adiabatic response in quantum and classical systems, Phys. Rep. 697, 1 (2017) https://doi.org/10.1016/j.physrep.2017.07.001
M. Carrega, P. Solinas, A. Braggio, M. Sassetti, and U. Weiss, Functional integral approach to time-dependent heat exchange in open quantum systems: General method and applications, New J. Phys. 17(4), 045030 (2015) https://doi.org/10.1088/1367-2630/17/4/045030
74
H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, Topo-logical energy transfer in an optomechanical system with exceptional points, Nature 537(7618), 80 (2016) https://doi.org/10.1038/nature18604
75
C. Wang, L. Q. Wang, and J. Ren, Managing quantum heat transfer in a nonequilibrium qubit-phonon hybrid system with coherent phonon states, Chin. Phys. Lett. 38(1), 010501 (2021) https://doi.org/10.1088/0256-307X/38/1/010501
N. Shiraishi, K. Saito, and H. Tasaki, Universal tradeoff relation between power and efficiency for heat engines, Phys. Rev. Lett. 117(19), 190601 (2016) https://doi.org/10.1103/PhysRevLett.117.190601
81
J. M. Horowitz and T. R. Gingrich, Thermodynamic uncertainty relations constrain non-equilibrium fluctuations, Nat. Phys. 16(1), 15 (2020) https://doi.org/10.1038/s41567-019-0702-6