Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (1): 13203   https://doi.org/10.1007/s11467-021-1100-y
  本期目录
Topological states in quasicrystals
Jiahao Fan1,2,3, Huaqing Huang1,2,3()
1. School of Physics, Peking University, Beijing 100871, China
2. Center for High Energy Physics, Peking University, Beijing 100871, China
3. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
 全文: PDF(5621 KB)  
Abstract

With the rapid development of topological states in crystals, the study of topological states has been extended to quasicrystals in recent years. In this review, we summarize the recent progress of topological states in quasicrystals, particularly focusing on one-dimensional (1D) and 2D systems. We first give a brief introduction to quasicrystalline structures. Then, we discuss topological phases in 1D quasicrystals where the topological nature is attributed to the synthetic dimensions associated with the quasiperiodic order of quasicrystals. We further present the generalization of various types of crystalline topological states to 2D quasicrystals, where real-space expressions of corresponding topological invariants are introduced due to the lack of translational symmetry in quasicrystals. Finally, since quasicrystals possess forbidden symmetries in crystals such as five-fold and eight-fold rotation, we provide an overview of unique quasicrystalline symmetry-protected topological states without crystalline counterpart.

Key wordstopological states    quasicrystals    quantum Hall effect    topological insulator    topological superconductor
收稿日期: 2021-04-01      出版日期: 2021-08-24
Corresponding Author(s): Huaqing Huang   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(1): 13203.
Jiahao Fan, Huaqing Huang. Topological states in quasicrystals. Front. Phys. , 2022, 17(1): 13203.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1100-y
https://academic.hep.com.cn/fop/CN/Y2022/V17/I1/13203
1 X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
https://doi.org/10.1103/RevModPhys.83.1057
2 M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
https://doi.org/10.1103/RevModPhys.82.3045
3 B. A. Bernevig, Topological Insulators and Topological Superconductors, Princeton University Press, 2013
https://doi.org/10.1515/9781400846733
4 K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
https://doi.org/10.1103/PhysRevLett.45.494
5 D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a twodimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
https://doi.org/10.1103/PhysRevLett.49.405
6 A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal superconducting hybrid structures, Phys. Rev. B55(2), 1142 (1997)
https://doi.org/10.1103/PhysRevB.55.1142
7 A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B 78(19), 195125 (2008)
https://doi.org/10.1103/PhysRevB.78.195125
8 A. Kitaev, Periodic table for topological insulators and superconductors, in: AIP Conference Proceedings, Vol. 1134, pp 22–30, American Institute of Physics, 2009
https://doi.org/10.1063/1.3149495
9 S. Ryu, A. P. Schnyder, A. Furusaki,and A. W. W. Ludwig, Topological insulators and superconductors: Tenfold way and dimensional hierarchy, New J. Phys. 12(6), 065010 (2010)
https://doi.org/10.1088/1367-2630/12/6/065010
10 H. Zhang and S. C. Zhang, Topological insulators from the perspective of first-principles calculations, Phys. Status Solidi Rapid Res. Lett. 7(1–2), 72 (2013)
https://doi.org/10.1002/pssr.201206414
11 Y. Ando, Topological insulator materials, J. Phys. Soc. Jpn. 82(10), 102001 (2013)
https://doi.org/10.7566/JPSJ.82.102001
12 M. Sato and Y. Ando, Topological superconductors: A review, Rep. Prog. Phys. 80(7), 076501 (2017)
https://doi.org/10.1088/1361-6633/aa6ac7
13 H. Huang, Y. Xu, J. Wang, and W. Duan, Emerging topological states in quasi-two-dimensional materials, WIRES: Comp. Mol. Sci, 7(4), e1296 (2017)
https://doi.org/10.1002/wcms.1296
14 H. Huang, J. Liu, and W. Duan, Nontrivial Z2 topology in bismuth-based iii–v compounds, Phys. Rev. B90(19), 195105 (2014)
https://doi.org/10.1103/PhysRevB.90.195105
15 H. Huang, Z. Liu, H. Zhang, W. Duan, and D. Vanderbilt, Emergence of a Chern insulating state from a semi-Dirac dispersion, Phys. Rev. B92(16), 161115 (2015)
https://doi.org/10.1103/PhysRevB.92.161115
16 H. Huang and F. Liu, A unified view of topological phase transition in band theory, Research2020, 7832610 (2020)
https://doi.org/10.34133/2020/7832610
17 L. Fu, Topological crystalline insulators, Phys. Rev. Lett. 106(10), 106802 (2011)
https://doi.org/10.1103/PhysRevLett.106.106802
18 Y. Ando and L. Fu, Topological crystalline insulators and topological superconductors: From concepts to materials, Annu. Rev. Condens. Matter Phys. 6(1), 361 (2015)
https://doi.org/10.1146/annurev-conmatphys-031214-014501
19 F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P. Parkin, B. A. Bernevig, and T. Neupert, Higher-order topological insulators, Sci. Adv. 4(6), eaat0346 (2018)
https://doi.org/10.1126/sciadv.aat0346
20 J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W. Brouwer, Reflection-symmetric second-order topological insulators and superconductors, Phys. Rev. Lett. 119(24), 246401 (2017)
https://doi.org/10.1103/PhysRevLett.119.246401
21 H. C. Po, A. Vishwanath, and H. Watanabe, Symmetrybased indicators of band topology in the 230 space groups, Nat. Commun. 8(1), 50 (2017)
https://doi.org/10.1038/s41467-017-00133-2
22 B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C. Felser, M. I. Aroyo, and B. A. Bernevig, Topological quantum chemistry, Nature547(7663), 298 (2017)
https://doi.org/10.1038/nature23268
23 Z. Song, T. Zhang, Z. Fang, and C. Fang, Quantitative mappings between symmetry and topology in solids, Nat. Commun. 9, 3530 (2018)
https://doi.org/10.1038/s41467-018-06010-w
24 T. Zhang, Y. Jiang, Z. Song, H. Huang, Y. He, Z. Fang, H. Weng, and C. Fang, Catalogue of topological electronic materials, Nature566(7745), 475 (2019)
https://doi.org/10.1038/s41586-019-0944-6
25 F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Comprehensive search for topological materials using symmetry indicators, Nature566(7745), 486 (2019)
https://doi.org/10.1038/s41586-019-0937-5
26 M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A. Bernevig, and Z. Wang, A complete catalogue of high-quality topological materials, Nature566(7745), 480 (2019)
https://doi.org/10.1038/s41586-019-0954-4
27 D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett . 53(20), 1951 (1984)
https://doi.org/10.1103/PhysRevLett.53.1951
28 P. J. Steinhardt and S. Ostlund, The Physics of Quasicrystals, World Scientific, 1987
https://doi.org/10.1142/0391
29 C. Janot, Quasicrystals, in: Neutron and Synchrotron Radiation for Condensed MatterStudies, pp 197–211, Springer, 1994
https://doi.org/10.1007/978-3-662-22223-2_9
30 Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg, Topological states and adiabatic pumping in quasicrystals, Phys. Rev. Lett. 109(10), 106402 (2012)
https://doi.org/10.1103/PhysRevLett.109.106402
31 Y. E. Kraus and O. Zilberberg, Topological equivalence between the Fibonacci quasicrystal and the Harper model, Phys. Rev. Lett. 109(11), 116404 (2012)
https://doi.org/10.1103/PhysRevLett.109.116404
32 Y. E. Kraus, Z. Ringel, and O. Zilberberg, Fourdimensional quantum hall effect in a two-dimensional quasicrystal, Phys. Rev. Lett. 111(22), 226401 (2013)
https://doi.org/10.1103/PhysRevLett.111.226401
33 M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, Observation of topological phase transitions in photonic quasicrystals, Phys. Rev. Lett. 110(7), 076403 (2013)
https://doi.org/10.1103/PhysRevLett.110.076403
34 D. T. Tran, A. Dauphin, N. Goldman, and P. Gaspard, Topological Hofstadter insulators in a two-dimensional quasicrystal, Phys. Rev. B91(8), 085125 (2015)
https://doi.org/10.1103/PhysRevB.91.085125
35 D. R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B14(6), 2239 (1976)
https://doi.org/10.1103/PhysRevB.14.2239
36 J. N. Fuchs and J. Vidal, Hofstadter butterfly of a quasicrystal, Phys. Rev. B 94(20), 205437 (2016)
https://doi.org/10.1103/PhysRevB.94.205437
37 G. Naumis, Higher-dimensional quasicrystalline approach to the Hofstadter butterfly topological-phase band conductances: Symbolic sequences and self-similar rules at all magnetic fluxes, Phys. Rev. B100(16), 165101 (2019)
https://doi.org/10.1103/PhysRevB.100.165101
38 C. W. Duncan, S. Manna, and A. E. B. Nielsen, Topological models in rotationally symmetric quasicrystals, Phys. Rev. B 101(11), 115413 (2020)
https://doi.org/10.1103/PhysRevB.101.115413
39 H. Huang and F. Liu, Quantum spin Hall effect and spin Bott index in a quasicrystal lattice, Phys. Rev. Lett. 121(12), 126401 (2018)
https://doi.org/10.1103/PhysRevLett.121.126401
40 H. Huang and F. Liu, Theory of spin Bott index for quantum spin hall states in nonperiodic systems, Phys. Rev. B98(12), 125130 (2018)
https://doi.org/10.1103/PhysRevB.98.125130
41 H. Huang and F. Liu, Comparison of quantum spin Hall states in quasicrystals and crystals, Phys. Rev. B100(8), 085119 (2019)
https://doi.org/10.1103/PhysRevB.100.085119
42 J. Li, R. L. Chu, J. K. Jain, and S. Q. Shen, Topological Anderson insulator, Phys. Rev. Lett. 102(13), 136806 (2009)
https://doi.org/10.1103/PhysRevLett.102.136806
43 R. Chen, D. H. Xu, and B. Zhou, Topological Anderson insulator phase in a quasicrystal lattice, Phys. Rev. B100(11), 115311 (2019)
https://doi.org/10.1103/PhysRevB.100.115311
44 T. Peng, C. B. Hua, R. Chen, D. H. Xu, and B. Zhou, Topological Anderson insulators in an Ammann–Beenker quasicrystal and a snub-square crystal, Phys. Rev. B 103(8), 085307 (2021)
https://doi.org/10.1103/PhysRevB.103.085307
45 A. L. He, L. R. Ding, Y. Zhou, Y. F. Wang, and C. D. Gong, Quasicrystalline Chern insulators, Phys. Rev. B100(21), 214109 (2019)
https://doi.org/10.1103/PhysRevB.100.214109
46 H. Huang, Y. S. Wu, and F. Liu, Aperiodic topological crystalline insulators, Phys. Rev. B101(4), 041103 (2020)
https://doi.org/10.1103/PhysRevB.101.041103
47 D. Varjas, A. Lau, K. Pöyhönen, A. R. Akhmerov, D. I. Pikulin, and I. C. Fulga, Topological phases without crystalline counterparts, Phys. Rev. Lett. 123(19), 196401 (2019)
https://doi.org/10.1103/PhysRevLett.123.196401
48 R. Chen, C. Z. Chen, J. H. Gao, B. Zhou, and D. H. Xu, Higher-order topological insulators in quasicrystals, Phys. Rev. Lett. 124(3), 036803 (2020)
https://doi.org/10.1103/PhysRevLett.124.036803
49 S. Spurrier and N. R. Cooper, Kane-Mele with a twist: Quasicrystalline higher-order topological insulators with fractional mass kinks, Phys. Rev. Research2(3), 033071 (2020)
https://doi.org/10.1103/PhysRevResearch.2.033071
50 C. B. Hua, R. Chen, B. Zhou, and D. H. Xu, Higher-order topological insulator in a dodecagonal quasicrystal, Phys. Rev. B102(24), 241102 (2020)
https://doi.org/10.1103/PhysRevB.102.241102
51 T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Topological characterization of periodically driven quantum systems, Phys. Rev. B82(23), 235114 (2010)
https://doi.org/10.1103/PhysRevB.82.235114
52 Z. Gu, H. A. Fertig, D. P. Arovas, and A. Auerbach, Floquet spectrum and transport through an irradiated graphene ribbon, Phys. Rev. Lett. 107(21), 216601 (2011)
https://doi.org/10.1103/PhysRevLett.107.216601
53 M. Tezuka and N. Kawakami, Reentrant topological transitions in a quantum wire/superconductor system with quasiperiodic lattice modulation, Phys. Rev. B 85(14), 140508 (2012)
https://doi.org/10.1103/PhysRevB.85.140508
54 W. DeGottardi, D. Sen, and S. Vishveshwara, Majorana fermions in superconducting 1D systems having periodic, quasiperiodic, and disordered potentials, Phys. Rev. Lett. 110(14), 146404 (2013)
https://doi.org/10.1103/PhysRevLett.110.146404
55 R. Ghadimi, T. Sugimoto, and T. Tohyama, Majorana zero-energy mode and fractal structure in Fibonacci–Kitaev chain, J. Phys. Soc. Jpn. 86(11), 114707 (2017)
https://doi.org/10.7566/JPSJ.86.114707
56 I. C. Fulga, D. I. Pikulin, and T. A. Loring, Aperiodic weak topological superconductors, Phys. Rev. Lett. 116(25), 257002 (2016)
https://doi.org/10.1103/PhysRevLett.116.257002
57 R. Ghadimi, T. Sugimoto, K. Tanaka, and T. Tohyama, Topological superconductivity in quasicrystals, arXiv: 2006.06952 (2020)
58 Y. Cao, Y. Zhang, Y. B. Liu, C. C. Liu, W. Q. Chen, and F. Yang, Kohn–Luttinger mechanism driven exotic topological superconductivity on the Penrose lattice, Phys. Rev. Lett. 125(1), 017002 (2020)
https://doi.org/10.1103/PhysRevLett.125.017002
59 Z. Li and Z. F. Wang, Quantum anomalous Hall effect in twisted bilayer graphene quasicrystal, Chin. Phys. B29(10), 107101 (2020)
https://doi.org/10.1088/1674-1056/abab77
60 W. Yao, E. Wang, C. Bao, Y. Zhang, K. Zhang, et al., Quasicrystalline 30 twisted bilayer graphene as an incommensurate superlattice with strong interlayer coupling, Proceedings of the National Academy of Sciences, 115(27), 6928 (2018)
https://doi.org/10.1073/pnas.1720865115
61 A. Bansil, H. Lin, and T. Das, Topological band theory, Rev. Mod. Phys. 88(2), 021004 (2016)
https://doi.org/10.1103/RevModPhys.88.021004
62 C. L. Kane and E. J. Mele, Z2 topological order and the quantum spin hall effect, Phys. Rev. Lett. 95(14), 146802 (2005)
https://doi.org/10.1103/PhysRevLett.95.146802
63 L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B 76(4), 045302 (2007)
https://doi.org/10.1103/PhysRevB.76.045302
64 A. Jagannathan, The Fibonacci quasicrystal: Case study of hidden dimensions and multifractality, arXiv: 2012.14744 (2020)
65 E. Prodan, Virtual topological insulators with real quantized physics, Phys. Rev. B 91(24), 245104 (2015)
https://doi.org/10.1103/PhysRevB.91.245104
66 D. Levine and P. J. Steinhardt, Quasicrystals: A new class of ordered structures, Phys. Rev. Lett. 53(26), 2477 (1984)
https://doi.org/10.1103/PhysRevLett.53.2477
67 N. Wang, H. Chen, and K. H. Kuo, Two-dimensional quasicrystal with eightfold rotational symmetry, Phys. Rev. Lett. 59(9), 1010 (1987)
https://doi.org/10.1103/PhysRevLett.59.1010
68 N. I. N. G. Wang, K. K. Fung, and K. H. Kuo, Symmetry study of the Mn–Si–Al octagonal quasicrystal by convergent beam electron diffraction, Appl. Phys. Lett. 52(25), 2120 (1988)
https://doi.org/10.1063/1.99754
69 R. Lifshitz, Quasicrystals: A matter of definition, Found. Phys. 33(12), 1703 (2003)
https://doi.org/10.1023/A:1026247120031
70 P. Bak, Phenomenological theory of icosahedral incommensurate (“quasiperiodic”) order in Mn–Al alloys, Phys. Rev. Lett. 54(14), 1517 (1985)
https://doi.org/10.1103/PhysRevLett.54.1517
71 M. Duneau and A. Katz, Quasiperiodic patterns, Phys. Rev. Lett. 54(25), 2688 (1985)
https://doi.org/10.1103/PhysRevLett.54.2688
72 V. Elser and C. L. Henley, Crystal and quasicrystal structures in Al–Mn–Si alloys, Phys. Rev. Lett. 55(26), 2883 (1985)
https://doi.org/10.1103/PhysRevLett.55.2883
73 J. E. S. Socolar, T. C. Lubensky, and P. J. Steinhardt, Phonons, phasons, and dislocations in quasicrystals, Phys. Rev. B 34(5), 3345 (1986)
https://doi.org/10.1103/PhysRevB.34.3345
74 S. J. Poon, Electronic properties of quasicrystals an experimental review, Adv. Phys. 41(4), 303 (1992)
https://doi.org/10.1080/00018739200101513
75 L. Guidoni, C. Triché, P. Verkerk, and G. Grynberg, Quasiperiodic optical lattices, Phys. Rev. Lett. 79(18), 3363 (1997)
https://doi.org/10.1103/PhysRevLett.79.3363
76 L. Guidoni, B. Dépret, A. Di Stefano, and P. Verkerk, Atomic diffusion in an optical quasicrystal with five-fold symmetry, Phys. Rev. A60(6), R4233 (1999)
https://doi.org/10.1103/PhysRevA.60.R4233
77 T. A. Corcovilos and J. Mittal, Two-dimensional optical quasicrystal potentials for ultracold atom experiments, Appl. Opt. 58(9), 2256 (2019)
https://doi.org/10.1364/AO.58.002256
78 K. Viebahn, M. Sbroscia, E. Carter, J. C. Yu, and U. Schneider, Matter-wave diffraction from a quasicrystalline optical lattice, Phys. Rev. Lett. 122(11), 110404 (2019)
https://doi.org/10.1103/PhysRevLett.122.110404
79 M. Sbroscia, K. Viebahn, E. Carter, J.-C. Yu, A. Gaunt, and U. Schneider, Observing localization in a 2D quasicrystalline optical lattice, Phys. Rev. Lett. 125, 200604 (2020)
https://doi.org/10.1103/PhysRevLett.125.200604
80 W. Steurer and D. Sutter-Widmer, Photonic and phononic quasicrystals, J. Phys. D Appl. Phys. 40(13), R229 (2007)
https://doi.org/10.1088/0022-3727/40/13/R01
81 M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. DeLa Rue, and P. Millar, Two-dimensional penrosetiled photonic quasicrystals: From diffraction pattern to band structure, Nanotechnology11(4), 274 (2000)
https://doi.org/10.1088/0957-4484/11/4/316
82 B. Freedman, G. Bartal, M. Segev, R. Lifshitz, and N. Demetrios, Wave and defect dynamics in nonlinear photonic quasicrystals, Nature440(7088), 1166 (2006)
https://doi.org/10.1038/nature04722
83 A. Jagannathan and M. Duneau, An eightfold optical quasicrystal with cold atoms, EPL 104(6), 66003 (2014)
https://doi.org/10.1209/0295-5075/104/66003
84 M. Verbin, O. Zilberberg, Y. Lahini, and E. Yaacov, Topological pumping over a photonic Fibonacci quasicrystal, Phys. Rev. B 91(6), 064201 (2015)
https://doi.org/10.1103/PhysRevB.91.064201
85 M. Bayindir, E. Cubukcu, I. Bulu, and E. Ozbay, Photonic band-gap effect, localization, and waveguiding in the two-dimensional Penrose lattice, Phys. Rev. B 63(16), 161104 (2001)
https://doi.org/10.1103/PhysRevB.63.161104
86 A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice, Phys. Rev. Lett. 94(18), 183903 (2005)
https://doi.org/10.1103/PhysRevLett.94.183903
87 P. Bordia, H. Lüschen, S. Scherg, S. Gopalakrishnan, M. Knap, U. Schneider, and I. Bloch, Probing slow relaxation and many-body localization in two-dimensional quasiperiodic systems, Phys. Rev. X 7(4), 041047 (2017)
https://doi.org/10.1103/PhysRevX.7.041047
88 H. P. Lüschen, P. Bordia, S. Scherg, F. Alet, E. Altman, U. Schneider, and I. Bloch, Observation of slow dynamics near the many-body localization transition in one-dimensional quasiperiodic systems, Phys. Rev. Lett. 119(26), 260401 (2017)
https://doi.org/10.1103/PhysRevLett.119.260401
89 Y. S. Chan, C. T. Chan, and Z. Y. Liu, Photonic band gaps in two dimensional photonic quasicrystals, Phys. Rev. Lett. 80(5), 956 (1998)
https://doi.org/10.1103/PhysRevLett.80.956
90 L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, Light transport through the band-edge states of Fibonacci quasicrystals, Phys. Rev. Lett. 90(5), 055501 (2003)
https://doi.org/10.1103/PhysRevLett.90.055501
91 M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, Complete photonic bandgaps in 12-fold symmetric quasicrystals, Nature404(6779), 740 (2000)
https://doi.org/10.1038/35008023
92 I. Bloch, Ultracold quantum gases in optical lattices, Nat. Phys. 1(1), 23 (2005)
https://doi.org/10.1038/nphys138
93 T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Topological photonics, Rev. Mod. Phys. 91(1), 015006 (2019)
https://doi.org/10.1103/RevModPhys.91.015006
94 M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, Photonic floquet topological insulators, Nature496(7444), 196 (2013)
https://doi.org/10.1038/nature12066
95 O. Zilberberg, Topology in quasicrystals, arXiv: 2012. 03644 (2020)
96 S. Aubry and G. André, Analyticity breaking and Anderson localization in incommensurate lattices, Ann. Isr. Phys. Soc. 3(133), 18 (1980)
97 J. Zak, Magnetic translation group, Phys. Rev. 134(6A), A1602 (1964)
https://doi.org/10.1103/PhysRev.134.A1602
98 I. Dana, Y. Avron, and J. Zak, Quantised Hall conductance in a perfect crystal, J. Phys. C Solid State Phys. 18(22), L679 (1985)
https://doi.org/10.1088/0022-3719/18/22/004
99 D. N. Christodoulides, F. Lederer, and Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices, Nature424(6950), 817 (2003)
https://doi.org/10.1038/nature01936
100 A. Szameit, D. Blömer, J. Burghoff, T. Schreiber, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, Discrete nonlinear localization in femtosecond laser written waveguides in fused silica, Opt. Express13(26), 10552 (2005)
https://doi.org/10.1364/OPEX.13.010552
101 Y. Lahini, R. Pugatch, F. Pozzi, M. Sorel, R. Morandotti, N. Davidson, and Y. Silberberg, Observation of a localization transition in quasiperiodic photonic lattices, Phys. Rev. Lett. 103, 013901 (2009)
https://doi.org/10.1103/PhysRevLett.103.013901
102 I. Petrides, H. M. Price, and O. Zilberberg, Sixdimensional quantum hall effect and three-dimensional topological pumps, Phys. Rev. B 98, 125431 (2018)
https://doi.org/10.1103/PhysRevB.98.125431
103 T. Fukui, Y. Hatsugai, and H. Suzuki, Chern numbers in discretized Brillouin zone: Efficient method of computing (spin) Hall conductances, J. Phys. Soc. Jpn. 74(6), 1674 (2005)
https://doi.org/10.1143/JPSJ.74.1674
104 Y. Hatsugai, T. Fukui, and H. Aoki, Topological analysis of the quantum hall effect in graphene: Dirac–Fermi transition across van hove singularities and edge versus bulk quantum numbers, Phys. Rev. B 74(20), 205414 (2006)
https://doi.org/10.1103/PhysRevB.74.205414
105 R. Bianco and R. Resta, Mapping topological order in coordinate space, Phys. Rev. B84(24), 241106 (2011)
https://doi.org/10.1103/PhysRevB.84.241106
106 N. H. Lindner, G. Refael, and V. Galitski, Floquet topological insulator in semiconductor quantum wells, Nat. Phys. 7(6), 490 (2011)
https://doi.org/10.1038/nphys1926
107 M. A. Bandres, M. C. Rechtsman, and M. Segev, Topological photonic quasicrystals: Fractal topological spectrum and protected transport, Phys. Rev. X6(1), 011016 (2016)
https://doi.org/10.1103/PhysRevX.6.011016
108 Z. Gu, H. A. Fertig, and P. Daniel, Floquet spectrum and transport through an irradiated graphene ribbon, Phys. Rev. Lett. 107(21), 216601 (2011)
https://doi.org/10.1103/PhysRevLett.107.216601
109 D. Toniolo, On the equivalence of the Bott index and the Chern number on a torus, and the quantization of the Hall conductivity with a real space Kubo formula, arXiv: 1708.05912 (2017)
110 F. D. M. Haldane, Model for a quantum hall effect without landau levels: Condensed-matter realization of the parity anomaly, Phys. Rev. Lett. 61(18), 2015 (1988)
https://doi.org/10.1103/PhysRevLett.61.2015
111 A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321(1), 2 (2006)
https://doi.org/10.1016/j.aop.2005.10.005
112 M. Brzezińska, A. M. Cook, and T. Neupert, Topology in the Sierpiński–Hofstadter problem, Phys. Rev. B98(20), 205116 (2018)
https://doi.org/10.1103/PhysRevB.98.205116
113 C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95(22), 226801 (2005)
https://doi.org/10.1103/PhysRevLett.95.226801
114 B. A. Bernevig and S. C. Zhang, Quantum spin Hall effect, Phys. Rev. Lett. 96(10), 106802 (2006)
https://doi.org/10.1103/PhysRevLett.96.106802
115 J. Maciejko, T. L. Hughes, and S.-C. Zhang, The quantum spin Hall effect, Annu. Rev. Condens. Matter Phys. 2(1), 31 (2011)
https://doi.org/10.1146/annurev-conmatphys-062910-140538
116 M. König, H. Buhmann, L. W. Molenkamp, T. Hughes, C. X. Liu, X. L. Qi, and S. C. Zhang, The quantum spin Hall effect: Theory and experiment, J. Phys. Soc. Jpn. 77(3), 031007 (2008)
https://doi.org/10.1143/JPSJ.77.031007
117 J. C. Slater and G. F. Koster, Simplified LCAO method for the periodic potential problem, Phys. Rev. 94(6), 1498 (1954)
https://doi.org/10.1103/PhysRev.94.1498
118 W. A. Harrison, Electronic structure and the properties of solids: the physics of the chemical bond, Courier Corporation, 2012
119 D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D. M. Haldane, Quantum spin-Hall effect and topologically invariant Chern numbers, Phys. Rev. Lett. 97(3), 036808 (2006)
https://doi.org/10.1103/PhysRevLett.97.036808
120 T. Fukui and Y. Hatsugai, Topological aspects of the quantum spin-Hall effect in graphene: Z2 topological order and spin Chern number, Phys. Rev. B75(12), 121403 (2007)
https://doi.org/10.1103/PhysRevB.75.121403
121 E. Prodan, Robustness of the spin-Chern number, Phys. Rev. B 80(12), 125327 (2009)
https://doi.org/10.1103/PhysRevB.80.125327
122 J. Bellissard, A. van Elst, and H. Schulz-Baldes, The noncommutative geometry of the quantum Hall effect, J. Math. Phys. 35(10), 5373 (1994)
https://doi.org/10.1063/1.530758
123 M. B. Hastings and T. A. Loring, Almost commuting matrices, localized Wannier functions, and the quantum hall effect, J. Math. Phys. 51(1), 015214 (2010)
https://doi.org/10.1063/1.3274817
124 R. Exel and A. Terry, Invariants of almost commuting unitaries, J. Funct. Anal. 95(2), 364 (1991)
https://doi.org/10.1016/0022-1236(91)90034-3
125 H. Katsura and T. Koma, The noncommutative index theorem and the periodic table for disordered topological insulators and superconductors, J. Math. Phys. 59(3), 031903 (2018)
https://doi.org/10.1063/1.5026964
126 J. C. Y. Teo, L. Fu, and C. L. Kane, Surface states and topological invariants in three-dimensional topological insulators: Application to Bi1−xSbx, Phys. Rev. B78(4), 045426 (2008)
https://doi.org/10.1103/PhysRevB.78.045426
127 T. A. Loring, K-theory and pseudospectra for topological insulators, Ann. Phys. 356, 383 (2015)
128 Z. Ringel, Y. E. Kraus, and A. Stern, Strong side of weak topological insulators, Phys. Rev. B86(4), 045102 (2012)
https://doi.org/10.1103/PhysRevB.86.045102
129 I. C. Fulga, B. van Heck, J. M. Edge, and A. R. Akhmerov, Statistical topological insulators, Phys. Rev. B 89(15), 155424 (2014)
https://doi.org/10.1103/PhysRevB.89.155424
130 A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys. Uspekhi44(10S), 131 (2001)
https://doi.org/10.1070/1063-7869/44/10S/S29
131 N. Read and D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect, Phys. Rev. B61(15), 10267 (2000)
https://doi.org/10.1103/PhysRevB.61.10267
132 R. Jackiw and C. Rebbi, Solitons with fermion number 1/2, Phys. Rev. D 13(12), 3398 (1976)
https://doi.org/10.1103/PhysRevD.13.3398
133 J. C. Y. Teo and T. L. Hughes, Existence of majoranafermion bound states on disclinations and the classification of topological crystalline superconductors in two dimensions, Phys. Rev. Lett.111(4), 047006 (2013)
https://doi.org/10.1103/PhysRevLett.111.047006
134 M. Baake and U. Grimm, Aperiodic Order, Vol. 1, Cambridge University Press, 2013
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed