Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (2): 23202   https://doi.org/10.1007/s11467-021-1107-4
  本期目录
Thermal conductivity of micro/nano-porous polymers: Prediction models and applications
Haiyan Yu1, Haochun Zhang1(), Jinchuan Zhao2,3, Jing Liu2, Xinlin Xia1, Xiaohu Wu4
1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
2. Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical & Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, M5S 3G8, Ontario, Canada
3. Cellular Polymer Science & Technology Laboratory, School of Materials Science & Engineering, Shandong University, Jinan 250061, China
4. Shandong Institute of Advanced Technology, Jinan 250100, China
 全文: PDF(9394 KB)  
Abstract

Micro/nano-porous polymeric material is considered a unique industrial material due to its extremely low thermal conductivity, low density, and high surface area. Therefore, it is necessary to establish an accurate thermal conductivity prediction model suiting their applicable conditions and provide a theoretical basis for expanding their applications. In this work, the development of the calculation model of equivalent thermal conductivity of micro/nano-porous polymeric materials in recent years is summarized. Firstly, it reviews the process of establishing the overall equivalent thermal conductivity calculation model for micro/nanoporous polymers. Then, the predicted calculation models of thermal conductivity are introduced separately according to the conductive and radiative thermal conductivity models. In addition, the thermal conduction part is divided into the gaseous thermal conductivity model, solid thermal conductivity model and gas–solid coupling model. Finally, it is concluded that, compared with other porous materials, there are few studies on heat transfer of micro/ nanoporous polymers, especially on the particular heat transfer mechanisms such as scale effects at the micro/nanoscale. In particular, the following aspects of porous polymers still need to be further studied: micro scaled thermal radiation, heat transfer characteristics of particular morphologies at the nanoscales, heat transfer mechanism and impact factors of micro/nanoporous polymers. Such studies would provide a more accurate prediction of thermal conductivity and a broader application in energy conversion and storage systems.

Key wordsthermal conductivity    micro/nanoscale thermal radiation    micro/nanoscale thermal conduction    porous polymers    heat transfer properties
收稿日期: 2020-10-20      出版日期: 2021-09-28
Corresponding Author(s): Haochun Zhang   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(2): 23202.
Haiyan Yu, Haochun Zhang, Jinchuan Zhao, Jing Liu, Xinlin Xia, Xiaohu Wu. Thermal conductivity of micro/nano-porous polymers: Prediction models and applications. Front. Phys. , 2022, 17(2): 23202.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1107-4
https://academic.hep.com.cn/fop/CN/Y2022/V17/I2/23202
1 J. Wu, F. Xu, S. Li, P. Ma, X. Zhang, Q. Liu, R. Fu, and D. Wu, Porous polymers as multifunctional material platforms toward task-specific applications, Adv. Mater. 31, 4 (2019)
https://doi.org/10.1002/adma.201802922
2 B. H. Kreps, Energy sprawl in the renewable-energy sector: moving to sufficiency in a post-growth era, Am. J. Econ. Sociol. 79, 3 (2020)
https://doi.org/10.1111/ajes.12346
3 S. K. Mangla, S. Luthra, S. Jakhar, S. Gandhi, K. Muduli, and A. Kumar, A step to clean energy — Sustainability in energy system management in an emerging economy context, J. Clean. Prod. 242, 118462 (2020)
https://doi.org/10.1016/j.jclepro.2019.118462
4 X. Chang, Y. Xue, J. Li, L. Zou, and M. Tang, Potential health impact of environmental micro- and nanoplastics pollution, J. Appl. Toxicol. 40(1), 4 (2020)
https://doi.org/10.1002/jat.3915
5 F. A. Faize and M. Akhtar, Addressing environmental knowledge and environmental attitude in undergraduate students through scientific argumentation, J. Clean. Prod. 252, 119928 (2020)
https://doi.org/10.1016/j.jclepro.2019.119928
6 S. Chu and A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature 488(7411), 294 (2012)
https://doi.org/10.1038/nature11475
7 L. Song, C. Jiang, S. Liu, C. Jiao, X. Si, S. Wang, F. Li, J. Zhang, L. Sun, F. Xu, and F. Huang, Progress in improving thermodynamics and kinetics of new hydrogen storage materials, Front. Phys. 6(2), 151 (2011)
https://doi.org/10.1007/s11467-011-0175-2
8 Z. C. Tu, Abstract models for heat engines, Front. Phys. 16(3), 33202 (2021)
https://doi.org/10.1007/s11467-020-1029-6
9 X. He, A review of material development in the field of carbon capture and the application of membrane-based processes in power plants and energy-intensive industries, Energy Sustain. Soc. 8(1), 34 (2018)
https://doi.org/10.1186/s13705-018-0177-9
10 Y. Huang and X. Feng, Polymer-enhanced ultrafiltration: Fundamentals, applications and recent developments, J. Membr. Sci. 586, 53 (2019)
https://doi.org/10.1016/j.memsci.2019.05.037
11 S. Wang, Y. Huang, C. Zhao, E. Chang, A. Ameli, H. E. Naguib, and C. B. Park, Theoretical modeling and experimental verification of percolation threshold with MWCNTs’ rotation and translation around a growing bubble in conductive polymer composite foams, Compos. Sci. Technol. 199, 108345 (2020)
https://doi.org/10.1016/j.compscitech.2020.108345
12 M. Hamidinejad, B. Zhao, R. K. M. Chu, N. Moghimian, H. E. Naguib, T. Filleter, and C. B. Park, Enhanced electrical and electromagnetic interference shielding properties of polymer–graphene nanoplatelet composites fabricated via supercritical-fluid treatment and physical foaming, ACS Appl. Mater. Interfaces 10, 36 (2018)
https://doi.org/10.1021/acsami.8b10745
13 Y. Huang, T. Gancheva, B. D. Favis, A. Abidli, J. Wang, and C. B. Park, Hydrophobic porous polypropylene with hierarchical structures for ultrafast and highly selective oil/water separation, ACS Appl. Mater. Interfaces 13, 14 (2021)
https://doi.org/10.1021/acsami.0c21852
14 J. Zhao, G. Wang, Z. Chen, Y. Huang, C. Wang, A. Zhang, and C. B. Park, Microcellular injection molded outstanding oleophilic and sound-insulating PP/PTFE nanocomposite foam, Compos. Part B Eng. 215, 108786 (2021)
https://doi.org/10.1016/j.compositesb.2021.108786
15 B. Zhao, M. Hamidinejad, C. Zhao, R. Li, S. Wang, Y. Kazemi, and C. B. Park, A versatile foaming platform to fabricate polymer/carbon composites with high dielectric permittivity and ultra-low dielectric loss, J. Mater. Chem. A 7(1), 133 (2019)
https://doi.org/10.1039/C8TA05556D
16 J. Zhao, G. Wang, L. Zhang, B. Li, C. Wang, G. Zhao, and C. B. Park, Lightweight and strong fibrillary PTFE reinforced polypropylene composite foams fabricated by foam injection molding, Eur. Polym. J. 119, 22 (2019)
https://doi.org/10.1016/j.eurpolymj.2019.07.016
17 J. M. Eagan, J. Xu, R. Di Girolamo, C. M. Thurber, C. W. Macosko, A. M. La Pointe, F. S. Bates, and G. W. Coates, Combining polyethylene and polypropylene: Enhanced performance with PE/iPP multiblock polymers, Science 355(6327), 814 (2017)
https://doi.org/10.1126/science.aah5744
18 Z. Zhang, W. Li, and J. Kan, Behavior of a thermoelectric power generation device based on solar irradiation and the earth’s surface-air temperature difference, Energy Convers. Manage. 97, 178 (2015)
https://doi.org/10.1016/j.enconman.2015.03.060
19 S. A. Khan, N. Sezer, S. Ismail, and M. Koç, Design, synthesis and nucleate boiling performance assessment of hybrid micro-nano porous surfaces for thermal management of concentrated photovoltaics (CPV), Energy Convers. Manage. 195, 1056 (2019)
https://doi.org/10.1016/j.enconman.2019.05.068
20 J. Zhao, Y. Huang, G. Wang, Y. Qiao, Z. Chen, A. Zhang, and C. B. Park, Fabrication of outstanding thermal-insulating, mechanical robust and superhydrophobic PP/CNT/sorbitol derivative nanocomposite foams for efficient oil/water separation, J. Hazard. Mater. 418, 126295 (2021)
https://doi.org/10.1016/j.jhazmat.2021.126295
21 J. Zhao, Q. Zhao, L. Wang, C. Wang, B. Guo, C. B. Park, and G. Wang, Development of high thermal insulation and compressive strength BPP foams using moldopening foam injection molding with in-situ fibrillated PTFE fibers, Eur. Polym. J. 98, 1 (2018)
https://doi.org/10.1016/j.eurpolymj.2017.11.001
22 P. Gong, G. Wang, M. P. Tran, P. Buahom, S. Zhai, G. Li, and C. B. Park, Advanced bimodal polystyrene/multiwalled carbon nanotube nanocomposite foams for thermal insulation, Carbon 120, 1 (2017)
https://doi.org/10.1016/j.carbon.2017.05.029
23 G. Wang, J. Zhao, G. Wang, H. Zhao, J. Lin, G. Zhao, and C. B. Park, Strong and super thermally insulating insitu nanofibrillar PLA/PET composite foam fabricated by high-pressure microcellular injection molding, Chem. Eng. J. 390, 124520 (2020)
https://doi.org/10.1016/j.cej.2020.124520
24 J. Zhao, G. Wang, C. Wang, and C. B. Park, Ultra-lightweight, super thermal-insulation and strong PP/CNT microcellular foams, Compos. Sci. Technol. 191, 108084 (2020)
https://doi.org/10.1016/j.compscitech.2020.108084
25 P. Gong, P. Buahom, M. P. Tran, M. Saniei, C. B. Park, and P. Pötschke, Heat transfer in microcellular polystyrene/multi-walled carbon nanotube nanocomposite foams, Carbon 93, 819 (2015)
https://doi.org/10.1016/j.carbon.2015.06.003
26 G. Wang, J. Zhao, L. H. Mark, G. Wang, K. Yu, C. Wang, C. B. Park, and G. Zhao, Ultra-tough and super thermalinsulation nanocellular PMMA/TPU, Chem. Eng. J.325, 632 (2017)
https://doi.org/10.1016/j.cej.2017.05.116
27 G. Wang, J. Zhao, K. Yu, L. H. Mark, G. Wang, P. Gong, C. B. Park, and G. Zhao, Role of elastic strain energy in cell nucleation of polymer foaming and its application for fabricating sub-microcellular TPU microfilms, Polymer (Guildf.) 119, 28 (2017)
https://doi.org/10.1016/j.polymer.2017.05.016
28 L. Wang, R. E. Lee, G. Wang, R. K. M. Chu, J. Zhao, and C. B. Park, Use of stereocomplex crystallites for fully-biobased microcellular low-density poly(lactic acid) foams for green packaging, Chem. Eng. J. 327, 1151 (2017)
https://doi.org/10.1016/j.cej.2017.07.024
29 B. Krause, H. J. P. Sijbesma, P. Münüklü, N. F. A. Van Der Vegt, and M. Wessling, Bicontinuous nanoporous polymers by carbon dioxide foaming, Macromolecules 34, 25 (2001)
https://doi.org/10.1021/ma010854j
30 S. N. Leung, and J. E. Lee, Tunable microcellular and nanocellular morphologies of poly(vinylidene) fluoride foams via crystal polymorphism control, Polymer Crystallization2(1), 1 (2019)
https://doi.org/10.1002/pcr2.10033
31 S. Pérez-Tamarit, B. Notario, E. Solórzano, and M. A. Rodriguez-Perez, Light transmission in nanocellular polymers: Are semi-transparent cellular polymers possible? Mater. Lett. 210, 39 (2018)
https://doi.org/10.1016/j.matlet.2017.08.109
32 S. Liu, R. Eijkelenkamp, J. Duvigneau, and G. J. Vancso, Silica-assisted nucleation of polymer foam cells with nanoscopic dimensions: impact of particle size, line tension, and surface functionality, ACS Appl. Mater. Interfaces 9, 43 (2017)
https://doi.org/10.1021/acsami.7b11248
33 B. Notario, J. Pinto, and M. A. Rodriguez-Perez, Nanoporous polymeric materials: A new class of materials with enhanced properties, Prog. Mater. Sci. 78–79, 93 (2016)
https://doi.org/10.1016/j.pmatsci.2016.02.002
34 B. Notario, J. Pinto, and M. A. Rodríguez-Pérez, Towards a new generation of polymeric foams: PMMA nanocellular foams with enhanced physical properties, Polymer (Guildf.) 63, 116 (2015)
https://doi.org/10.1016/j.polymer.2015.03.003
35 Y. Zeng, R. Zou, and Y. Zhao, Carbon dioxide capture: Covalent organic frameworks for CO2 capture, Adv. Mater. 28, 3032 (2016)
https://doi.org/10.1002/adma.201670105
36 L. Zou, Y. Sun, S. Che, X. Yang, X. Wang, M. Bosch, Q. Wang, H. Li, M. Smith, S. Yuan, Z. Perry, and H. C. Zhou, Porous organic polymers for post-combustion carbon capture, Adv. Mater. 29, 37 (2017)
https://doi.org/10.1002/adma.201700229
37 X. Liu, G. J. H. Lim, Y. Wang, L. Zhang, D. Mullangi, Y. Wu, D. Zhao, J. Ding, A. K. Cheetham, and J. Wang, Binder-free 3D printing of covalent organic framework (COF) monoliths for CO2 adsorption, Chem. Eng. J. 403, 126333 (2021)
https://doi.org/10.1016/j.cej.2020.126333
38 M. Wang, S. Zhou, S. Cao, Z. Wang, S. Liu, S. Wei, Y. Chen, and X. Lu, Stimulus-responsive adsorbent materials for CO2 capture and separation, J. Mater. Chem. A8, 10519 (2020)
https://doi.org/10.1039/D0TA01863E
39 P. Puthiaraj, Y. R. Lee, S. Zhang, and W. S. Ahn, Triazine-based covalent organic polymers: design, synthesis and applications in heterogeneous catalysis, J. Mater. Chem. A 4(42), 16288 (2016)
https://doi.org/10.1039/C6TA06089G
40 Y. Zhang and S. N. Riduan, Functional porous organic polymers for heterogeneous catalysis, Chem. Soc. Rev. 41, 6 (2012)
https://doi.org/10.1039/C1CS15227K
41 Z. Ma, J. Zhuang, X. Zhang, and Z. Zhou, SiP monolayers: New 2D structures of group IV–V compounds for visible-light photohydrolytic catalysts, Front. Phys. 13(3), 138104 (2018)
https://doi.org/10.1007/s11467-018-0760-8
42 M. Kilpatrick, R. D. Eanes, and J. G. Morse, The dissociation constants of acids in salt solutions(IV): Cyclohexanecarboxylic acid, J. Am. Chem. Soc. 75(3), 588 (1953)
https://doi.org/10.1021/ja01099a021
43 A. Chakrabarti and M. M. Sharma, Cationic ion exchange resins as catalyst, Reactive Polymers 20(1–2), 1 (1993)
https://doi.org/10.1016/0923-1137(93)90064-M
44 R. Liu, Z. Yang, S. Chen, J. Yao, Q. Mu, D. Peng, and H. Zhao, Synthesis and facile functionalization of siloxane based hyper-cross-linked porous polymers and their applications in water treatment, Eur. Polym. J. 119, 94 (2019)
https://doi.org/10.1016/j.eurpolymj.2019.07.024
45 C. Gu, N. Huang, J. Gao, F. Xu, Y. Xu, and D. Jiang, Controlled synthesis of conjugated microporous polymer films: Versatile platforms for highly sensitive and label — free chemo — and biosensing, Angew. Chem. 126(19), 4950 (2014)
https://doi.org/10.1002/ange.201402141
46 S. Luo, Z. Zeng, G. Zeng, Z. Liu, R. Xiao, P. Xu, H. Wang, D. Huang, Y. Liu, B. Shao, Q. Liang, D. Wang, Q. He, L. Qin, and Y. Fu, Recent advances in conjugated microporous polymers for photocatalysis: Designs, applications, and prospects, J. Mater. Chem. A 8(14), 6434 (2020)
https://doi.org/10.1039/D0TA01102A
47 Y. N. Jiang, J. H. Zeng, Y. Yang, Z. K. Liu, J. J. Chen, D. C. Li, L. Chen, and Z. P. Zhan, A conjugated microporous polymer as a recyclable heterogeneous ligand for highly efficient regioselective hydrosilylation of allenes, Chem. Commun. 56(10), 1597 (2020)
https://doi.org/10.1039/C9CC09387G
48 S. Kim and Y. M. Lee, Rigid and microporous polymers for gas separation membranes, Prog. Polym. Sci. 43, 1 (2015)
https://doi.org/10.1016/j.progpolymsci.2014.10.005
49 A. I. Cooper, Conjugated microporous polymers, Adv. Mater. 21(12), 1291 (2009)
https://doi.org/10.1002/adma.200801971
50 F. Vilela, K. Zhang, and M. Antonietti, Conjugated porous polymers for energy applications, Energy Environ. Sci. 5(7), 7819 (2012)
https://doi.org/10.1039/c2ee22002d
51 J. Pinto, A. Athanassiou, and D. Fragouli, Surface modification of polymeric foams for oil spills remediation, J. Environ. Manage. 206, 872 (2018)
https://doi.org/10.1016/j.jenvman.2017.11.060
52 O. Oribayo, X. Feng, G. L. Rempel, and Q. Pan, Modification of formaldehyde-melamine-sodium bisulfite copolymer foam and its application as effective sorbents for clean up of oil spills, Chem. Eng. Sci. 160, 384 (2017)
https://doi.org/10.1016/j.ces.2016.11.035
53 M. R. El-Aassar, M. S. Masoud, M. F. Elkady, and A. A. Elzain, Synthesis, optimization, and characterization of poly (Styrene-co-Acrylonitrile) copolymer prepared via precipitation polymerization, Adv. Polym. Technol. 37(6), 2021 (2018)
https://doi.org/10.1002/adv.21860
54 A. Akelah, Functionalized Polymeric Materials in Agriculture and the Food Industry, Springer US, 2013
https://doi.org/10.1007/978-1-4614-7061-8
55 M. Noruzi, Electrospun nanofibres in agriculture and the food industry: A review, J. Sci. Food Agric. 96(14), 4663 (2016)
https://doi.org/10.1002/jsfa.7737
56 X. Meng, H. N. Wang, S. Y. Song, and H. J. Zhang, Proton-conducting crystalline porous materials, Chem. Soc. Rev. 46(2), 464 (2017)
https://doi.org/10.1039/C6CS00528D
57 S. Horike, D. Umeyama, and S. Kitagawa, Ion conductivity and transport by porous coordination polymers and metal–organic frameworks, Acc. Chem. Res. 46(11), 2376 (2013)
https://doi.org/10.1021/ar300291s
58 H. Xu, S. Tao, and D. Jiang, Proton conduction in crystalline and porous covalent organic frameworks, Nat. Mater. 15(7), 722 (2016)
https://doi.org/10.1038/nmat4611
59 P. M. Valetsky, M. G. Sulman, L. M. Bronstein, E. M. Sulman, A. I. Sidorov, and V. G. Matveeva, Nanosized catalysts in fine organic synthesis as a basis for developing innovative technologies in the pharmaceutical industry, Nanotechnol. Russ. 4(9–10), 647 (2009)
https://doi.org/10.1134/S1995078009090092
60 M. Sauceau, J. Fages, A. Common, C. Nikitine, and E. Rodier, New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide, Prog. Polym. Sci. 36(6), 749 (2011)
https://doi.org/10.1016/j.progpolymsci.2010.12.004
61 J. Shokri and K. Adibki, in: Cellulose — Medical, Pharmaceutical and Electronic Applications, InTech, 2013
62 Q. Fang, J. Wang, S. Gu, R. B. Kaspar, Z. Zhuang, J. Zheng, H. Guo, S. Qiu, and Y. Yan, 3D porous crystalline polyimide covalent organic frameworks for drug delivery, J. Am. Chem. Soc. 137(26), 8352 (2015)
https://doi.org/10.1021/jacs.5b04147
63 L. Feng, C. Qian, and Y. Zhao, Recent advances in covalent organic framework-based nanosystems for bioimaging and therapeutic applications, ACS Mater. Lett. 2, 1074 (2020)
https://doi.org/10.1021/acsmaterialslett.0c00260
64 M. C. Scicluna and L. Vella-Zarb, Evolution of nanocarrier drug-delivery systems and recent advancements in covalent organic framework–drug systems, ACS Appl. Nano Mater. 3(4), 3097 (2020)
https://doi.org/10.1021/acsanm.9b02603
65 N. Yadav, K. Mishra, and S. A. Hashmi, Optimization of porous polymer electrolyte for quasi-solid-state electrical double layer supercapacitor, Electrochim. Acta 235, 570 (2017)
https://doi.org/10.1016/j.electacta.2017.03.101
66 R. C. Agrawal, and G. P. Pandey, Solid polymer electrolytes: Materials designing and all-solid-state battery applications: an overview, J. Phys. D Appl. Phys. 41(22), 223001 (2008)
https://doi.org/10.1088/0022-3727/41/22/223001
67 D. T. Jr Hallinan and N. P. Balsara, Polymer electrolytes, Annu. Rev. Mater. Res. 43(1), 503 (2013)
https://doi.org/10.1146/annurev-matsci-071312-121705
68 S. Kramer, N. R. Bennedsen, and S. Kegnæs, Porous organic polymers containing active metal centers as catalysts for synthetic organic chemistry, ACS Catal. 8(8), 6961 (2018)
https://doi.org/10.1021/acscatal.8b01167
69 I. Ro, J. Resasco, and P. Christopher, Approaches for understanding and controlling interfacial effects in oxidesupported metal catalysts, ACS Catal. 8(8), 7368 (2018)
https://doi.org/10.1021/acscatal.8b02071
70 S. H. Xie, Y. Y. Liu, and J. Y. Li, Synthesis, microstructures, and magnetoelectric couplings of electrospun multiferroic nanofibers, Front. Phys. 7(4), 399 (2012)
https://doi.org/10.1007/s11467-011-0210-3
71 S. Ghasemi and A. Nematollahzadeh, Molecularly imprinted polymer membrane for the removal of naphthalene from petrochemical wastewater streams, Adv. Polym. Technol. 37(6), 2288 (2018)
https://doi.org/10.1002/adv.21904
72 K. Sanctucci and B. Shah, Association of naphthalene with acute hemolytic anemia, Acad. Emerg. Med. 7, 42 (2000)
https://doi.org/10.1111/j.1553-2712.2000.tb01889.x
73 A. Modak, M. Nandi, J. Mondal, and A. Bhaumik, Porphyrin based porous organic polymers: Novel synthetic strategy and exceptionally high CO2 adsorption capacity, Chem. Commun. 48(2), 248 (2012)
https://doi.org/10.1039/C1CC14275E
74 X. He, Q. Shi, X. Zhou, C. Wan, and C. Jiang, In situ composite of nano SiO2–P(VDF-HFP) porous polymer electrolytes for Li-ion batteries, Electrochim. Acta 51(6), 1069 (2005)
https://doi.org/10.1016/j.electacta.2005.05.048
75 J. Y. Sanchez, F. Alloin, and C. P. Lepmi, Polymeric materials in energy storage and conversion, Molecular Crystals and Liquid Crystals Science andTechnology A 324(1), 257 (1998)
https://doi.org/10.1080/10587259808047163
76 M. Alamgir and K. M. Abraham, Li Ion Conductive Electrolytes Based on Poly(vinyl chloride), J. Electrochem. Soc. 140(6), L96 (1993)
https://doi.org/10.1149/1.2221654
77 Y. Wu, J. Wang, K. Jiang, and S. Fan, Applications of carbon nanotubes in high performance lithium ion batteries, Front. Phys. 9(3), 351 (2014)
https://doi.org/10.1007/s11467-013-0308-x
78 Y. Huang, P. Liu, R. Hao, S. Kan, Y. Wu, H. Liu, and K. Liu, Engineering porous quasi-spherical Fe-N-C nanocatalysts with robust oxygen reduction performance for Zn-air battery application, ChemNanoMat 6(12), 1782 (2020)
https://doi.org/10.1002/cnma.202000404
79 J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling, Science 362(6412), 315 (2018)
https://doi.org/10.1126/science.aat9513
80 A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight, Nature 515(7528), 540 (2014)
https://doi.org/10.1038/nature13883
81 G. Sharma, B. Thakur, M. Naushad, A. Kumar, F. J. Stadler, S. M. Alfadul, and G. T. Mola, Applications of nanocomposite hydrogels for biomedical engineering and environmental protection, Environ. Chem. Lett. 16(1), 113 (2018)
https://doi.org/10.1007/s10311-017-0671-x
82 W. Chen, S. Liu, Y. Dong, X. Zhou, and F. Zhou, Poly (m-phenylene isophthalamide)/graphene composite aerogels with enhanced compressive shape stability for thermal insulation, J. Sol-Gel Sci. Technol. 96(2), 370 (2020)
https://doi.org/10.1007/s10971-020-05396-8
83 X. Han, J. Zhang, J. Huang, X. Wu, D. Yuan, Y. Liu, and Y. Cui, Chiral induction in covalent organic frameworks, Nat. Commun. 9, 1 (2018)
https://doi.org/10.1038/s41467-018-03689-9
84 Z. Wang, G. Chen, and K. Ding, Self-supported catalysts, Chem. Rev. 109(2), 322 (2009)
https://doi.org/10.1021/cr800406u
85 C. Train, R. Gheorghe, V. Krstic, L. M. Chamoreau, N. S. Ovanesyan, G. L. J. A. Rikken, M. Gruselle, and M. Verdaguer, Strong magneto-chiral dichroism in enantiopure chiral ferromagnets, Nat. Mater. 7(9), 729 (2008)
https://doi.org/10.1038/nmat2256
86 S. G. Mosanenzadeh, S. Karamikamkar, Z. Saadatnia, C. B. Park, and H. E. Naguib, PPDA-PMDA polyimide aerogels with tailored nanostructure assembly for air filtering applications, Separ. Purif. Tech. 250, 117279 (2020)
https://doi.org/10.1016/j.seppur.2020.117279
87 S. Karamikamkar, H. E. Naguib, and C. B. Park, Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: A review, Adv. Colloid Interface Sci. 276, 102101 (2020)
https://doi.org/10.1016/j.cis.2020.102101
88 Q. Qi, L. Ma, B. Zhao, S. Wang, X. Liu, Y. Lei, and C. B. Park, An effective design strategy for the sandwich structure of PVDF/GNP-Ni-CNT composites with remarkable electromagnetic interference shielding effectiveness, ACS Appl. Mater. Interfaces 12(32), 36568 (2020)
https://doi.org/10.1021/acsami.0c10600
89 S. Liu, J. Gong, and B. Xu, Three-dimensionally conformal porous polymeric microstructures of fabrics for electrothermal textiles with enhanced thermal management, Polymers (Basel) 10(7), 748 (2018)
https://doi.org/10.3390/polym10070748
90 D. Reichenberg, Properties of ion-exchange resins in relation to their structure (III): Kinetics of exchange, J. Am. Chem. Soc. 75(3), 589 (1953)
https://doi.org/10.1021/ja01099a022
91 B. Notario, J. Pinto, R. Verdejo, and M. A. Rodríguez-Pérez, Dielectric behavior of porous PMMA: From the micrometer to the nanometer scale, Polymer (Guildf.) 107, 302 (2016)
https://doi.org/10.1016/j.polymer.2016.11.030
92 B. Zheng, X. Lin, X. Zhang, D. Wu, and K. Matyjaszewski, Emerging functional porous polymeric and carbonaceous materials for environmental treatment and energy storage, Adv. Funct. Mater. 30(41), 1907006 (2020)
https://doi.org/10.1002/adfm.201907006
93 H. Shin, S. Seo, C. Park, J. Na, M. Han, and E. Kim, Energy saving electrochromic windows from bistable low-HOMO level conjugated polymers, Energy Environ. Sci. 9(1), 117 (2016)
https://doi.org/10.1039/C5EE03160E
94 Y. Kim, M. Han, J. Kim, and E. Kim, Electrochromic capacitive windows based on all conjugated polymers for a dual function smart window, Energy Environ. Sci. 11(8), 2124 (2018)
https://doi.org/10.1039/C8EE00080H
95 S. Rashidi, J. A. Esfahani, and N. Karimi, Porous materials in building energy technologies — A review of the applications, modelling and experiments, Renew. Sustain. Energy Rev. 91, 229 (2018)
https://doi.org/10.1016/j.rser.2018.03.092
96 W. Chen and W. Liu, Thermal analysis on the cooling performance of a porous evaporative plate for building, Heat Transf. Asian Res. 39(2), 127 (2010)
https://doi.org/10.1002/htj.20284
97 N. Gupta and G. N. Tiwari, Review of passive heating/ cooling systems of buildings, Energy Sci. Eng. 4(5), 305 (2016)
https://doi.org/10.1002/ese3.129
98 M. Dogru, M. Handloser, F. Auras, T. Kunz, D. Medina, A. Hartschuh, P. Knochel, and T. Bein, A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene, Angew. Chem. 125(10), 2992 (2013)
https://doi.org/10.1002/ange.201208514
99 S. W. Park, Z. Liao, B. Ibarlucea, H. Qi, H. H. Lin, D. Becker, J. Melidonie, T. Zhang, H. Sahabudeen, L. Baraban, C. K. Baek, Z. Zheng, E. Zschech, A. Fery, T. Heine, U. Kaiser, G. Cuniberti, R. Dong, and X. Feng, Two-dimensional boronate ester covalent organic framework thin films with large single crystalline domains for a neuromorphic memory device, Angew. Chem. Int. Ed.59(21), 8218 (2020)
https://doi.org/10.1002/anie.201916595
100 Z. Lai, X. Guo, Z. Cheng, G. Ruan, and F. Du, Green synthesis of fluorescent carbon dots from cherry tomatoes for highly effective detection of trifluralin herbicide in soil samples, Chemistry Select5(6), 1956 (2020)
https://doi.org/10.1002/slct.201904517
101 M. D. Allendorf, R. Dong, X. Feng, S. Kaskel, D. Matoga, and V. Stavila, Electronic devices using open framework materials, Chem. Rev. 120(16), 8581 (2020)
https://doi.org/10.1021/acs.chemrev.0c00033
102 F. Q. Huang, C. Y. Yang, and D. Y. Wan, Advanced solar materials for thin-film photovoltaic cells, Front. Phys.6(2), 177 (2011)
https://doi.org/10.1007/s11467-011-0173-4
103 S. B. Alahakoon, C. M. Thompson, G. Occhialini, and R. A. Smaldone, Design principles for covalent organic frameworks in energy storage applications, Chem- SusChem 10(10), 2116 (2017)
https://doi.org/10.1002/cssc.201700120
104 G. A. Leith, A. M. Rice, B. J. Yarbrough, A. A. Berseneva, R. T. Ly, C. N. III Buck, D. Chusov, A. J. Brandt, D. A. Chen, B. W. Lamm, M. Stefik, K. S. Stephenson, M. D. Smith, A. K. Vannucci, P. J. Pellechia, S. Garashchuk, and N. B. Shustova, A dual threat: Redoxactivity and electronic structures of welldefined donoracceptor fulleretic covalentorganic materials, Angew. Chem. Int. Ed. 59(15), 6000 (2020)
https://doi.org/10.1002/anie.201914233
105 J. Li, X. Jing, Q. Li, S. Li, X. Gao, X. Feng, and B. Wang, Bulk COFs and COF nanosheets for electrochemical energy storage and conversion, Chem. Soc. Rev. 49(11), 3565 (2020)
https://doi.org/10.1039/D0CS00017E
106 S. Lee, I. Y. Cho, D. Kim, N. K. Park, J. Park, Y. Kim, S. J. Kang, Y. Kim, and S. Y. Hong, Redox-active functional electrolyte for high-performance seawater batteries, ChemSusChem 13(9), 2220 (2020)
https://doi.org/10.1002/cssc.201903564
107 N. Liu, W. Li, M. Pasta, and Y. Cui, Nanomaterials for electrochemical energy storage, Front. Phys. 9(3), 323 (2014)
https://doi.org/10.1007/s11467-013-0408-7
108 P. P. Mukherjee and C. Y. Wang, Direct numerical simulation modeling of bilayer cathode catalyst layers in polymer electrolyte fuel cells, J. Electrochem. Soc. 154(11), B1121 (2007)
https://doi.org/10.1149/1.2776221
109 X. A. Zhang, S. Yu, B. Xu, M. Li, Z. Peng, Y. Wang, S. Deng, X. Wu, Z. Wu, M. Ouyang, and Y. H. Wang, Dynamic gating of infrared radiation in a textile, Science 363(6427), 619 (2019)
https://doi.org/10.1126/science.aau1217
110 Q. Peng, J. E, J. Chen, W. Zuo, X. Zhao, and Z. Zhang, Investigation on the effects of wall thickness and porous media on the thermal performance of a non-premixed hydrogen fueled cylindrical micro combustor, Energy Convers. Manage. 155, 276 (2018)
https://doi.org/10.1016/j.enconman.2017.10.095
111 Y. Cui, H. Gong, Y. Wang, D. Li, and H. Bai, A thermally insulating textile inspired by polar bear hair, Adv. Mater.30(14), 1706807 (2018)
https://doi.org/10.1002/adma.201706807
112 Y. N. Song, Y. Li, D. X. Yan, J. Lei, and Z. M. Li, Novel passive cooling composite textile for both outdoor and indoor personal thermal management, Compos. Part A Appl. Sci. Manuf. 130, 105738 (2020)
https://doi.org/10.1016/j.compositesa.2019.105738
113 R. Hu, Y. Liu, S. Shin, S. Huang, X. Ren, W. Shu, J. Cheng, G. Tao, W. Xu, R. Chen, and X. Luo, Emerging materials and strategies for personal thermal management, Adv. Energy Mater. 10(17), 1903921 (2020)
https://doi.org/10.1002/aenm.201903921
114 Y. Guo, C. Dun, J. Xu, J. Mu, P. Li, L. Gu, C. Hou, C. A. Hewitt, Q. Zhang, Y. Li, D. L. Carroll, and H. Wang, Ultrathin, washable, and large-area graphene papers for personal thermal management, Small 13(44), 1702645 (2017)
https://doi.org/10.1002/smll.201702645
115 G. Dai, Designing nonlinear thermal devices and metamaterials under the Fourier law: A route to nonlinear thermotics, Front. Phys. 16, 1 (2021)
https://doi.org/10.1007/s11467-021-1048-y
116 L. Qiu, N. Zhu, Y. Feng, E. E. Michaelides, G. Żyła, D. Jing, X. Zhang, P. M. Norris, C. N. Markides, and O. Mahian, A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids, Phys. Rep. 843, 1 (2020)
https://doi.org/10.1016/j.physrep.2019.12.001
117 G. Xu, K. Dong, Y. Li, H. Li, K. Liu, L. Li, J. Wu, and C. Qiu, Tunable analog thermal material, Nat. Commun. 11, 1 (2020)
https://doi.org/10.1038/s41467-020-19909-0
118 M. Chen, D. Pang, J. Mandal, X. Chen, H. Yan, Y. He, N. Yu, and Y. Yang, Designing mesoporous photonic structures for high-performance passive daytime radiative cooling, Nano Lett. 21(3), 1412 (2021)
https://doi.org/10.1021/acs.nanolett.0c04241
119 T. Wang, M. C. Long, H. B. Zhao, B. W. Liu, H. G. Shi, W. L. An, S. L. Li, S. M. Xu, and Y. Z. Wang, An ultralow-temperature superelastic polymer aerogel with high strength as a great thermal insulator under extreme conditions, J. Mater. Chem. A Mater. Energy Sustain.8(36), 18698 (2020)
https://doi.org/10.1039/D0TA05542E
120 F. Hu, S. Wu, and Y. Sun, Hollow-structured materials for thermal insulation, Adv. Mater. 31(38), 1801001 (2019)
https://doi.org/10.1002/adma.201801001
121 Y. Guo, Z. Zhang, M. Bescond, S. Xiong, M. Nomura, and S. Volz, Anharmonic phonon-phonon scattering at the interface between two solids by nonequilibrium Green’s function formalism, Phys. Rev. B 103(17), 174306 (2021)
https://doi.org/10.1103/PhysRevB.103.174306
122 G. Wang, C. Wang, J. Zhao, G. Wang, C. B. Park, and G. Zhao, Modelling of thermal transport through a nanocellular polymer foam: toward the generation of a new superinsulating material, Nanoscale 9(18), 5996 (2017)
https://doi.org/10.1039/C7NR00327G
123 G. Wang, C. Wang, J. Zhao, G. Wang, C. B. Park, G. Zhao, W. Van De Walle, and H. Janssen, Correction: Modelling of thermal transport through a nanocellular polymer foam: Toward the generation of a new superinsulating material, Nanoscale 10(43), 20469 (2018)
https://doi.org/10.1039/C8NR90192A
124 E. Cuce, C. H. Young, and S. B. Riffat, Performance investigation of heat insulation solar glass for low-carbon buildings, Energy Convers. Manage. 88, 834 (2014)
https://doi.org/10.1016/j.enconman.2014.09.021
125 Y. Xu, L. Lin, M. Xiao, S. Wang, A. T. Smith, L. Sun, and Y. Meng, Synthesis and properties of CO2-based plastics: Environmentally-friendly, energy-saving and biomedical polymeric materials, Prog. Polym. Sci. 80, 163 (2018)
https://doi.org/10.1016/j.progpolymsci.2018.01.006
126 J. Weng, D. Ouyang, X. Yang, M. Chen, G. Zhang, and J. Wang, Alleviation of thermal runaway propagation in thermal management modules using aerogel felt coupled with flame-retarded phase change material, Energy Convers. Manage. 200, 112071 (2019)
https://doi.org/10.1016/j.enconman.2019.112071
127 I. Oropeza-Perez and P. A. Østergaard, Active and passive cooling methods for dwellings: A review, Renew. Sustain. Energy Rev.82, 531 (2018)
https://doi.org/10.1016/j.rser.2017.09.059
128 S. Kashyap, S. Kabra, and B. Kandasubramanian, Graphene aerogel-based phase changing composites for thermal energy storage systems, J. Mater. Sci. 55(10), 4127 (2020)
https://doi.org/10.1007/s10853-019-04325-7
129
130 P. R. Ferrer, A. Mace, S. N. Thomas, and J. W. Jeon, Nanostructured porous graphene and its composites for energy storage applications, Nano Converg. 4, 1 (2017)
https://doi.org/10.1186/s40580-017-0123-0
131 E. Pakdel, M. Naebe, L. Sun, and X. Wang, Advanced functional fibrous materials for enhanced thermoregulating performance, ACS Appl. Mater. Interfaces 11(14), 13039 (2019)
https://doi.org/10.1021/acsami.8b19067
132 A. Yang, L. Cai, R. Zhang, J. Wang, P. C. Hsu, H. Wang, G. Zhou, J. Xu, and Y. Cui, Thermal management in nanofiber-based face mask, Nano Lett. 17(6), 3506 (2017)
https://doi.org/10.1021/acs.nanolett.7b00579
133 Y. Yang and Y. Zhang, Passive daytime radiative cooling: Principle, application, and economic analysis, MRS Energy Sustain. 7, 18 (2020)
https://doi.org/10.1557/mre.2020.18
134 M. Alvarez-Lainez, M. A. Rodriguez-Perez, and J. A. DE Saja, Thermal conductivity of open-cell polyolefin foams, J. Polym. Sci. B Polym. Phys. 46(2), 212 (2008)
https://doi.org/10.1002/polb.21358
135 L. R. Glicksman, in: Low Density Cellular Plastics, Springer Netherlands, 1994, pp 104–152
https://doi.org/10.1007/978-94-011-1256-7_5
136 P. Buahom, C. Wang, M. Alshrah, G. Wang, P. Gong, M. P. Tran, and C. B. Park, Wrong expectation of superinsulation behavior from largely-expanded nanocellular foams, Nanoscale 12(24), 13064 (2020)
https://doi.org/10.1039/D0NR01927E
137 L. R. Glicksman, M. Torpey, and A. Marge, Means to improve the thermal conductivity of foam insulation, J. Cell. Plast. 28(6), 571 (1992)
https://doi.org/10.1177/0021955X9202800604
138 A. G. Leach, The thermal conductivity of foams (I): Models for heat conduction, J. Phys. D Appl. Phys. 26(5), 733 (1993)
https://doi.org/10.1088/0022-3727/26/5/003
139 M. A. Schuetz and L. R. Glicksman, A basic study of heat transfer through foam insulation, J. Cell. Plast. 20(2), 114 (1984)
https://doi.org/10.1177/0021955X8402000203
140 Z. M. Zhang, Nano/Microscale Heat Transfer, New York: McGraw-Hill, 2007
141 Y. L. He and T. Xie, Advances of thermal conductivity models of nanoscale silica aerogel insulation material, Appl. Therm. Eng. 81, 28 (2015)
https://doi.org/10.1016/j.applthermaleng.2015.02.013
142 T. Xie, Y. L. He, and Z. J. Hu, Theoretical study on thermal conductivities of silica aerogel composite insulating material, Int. J. Heat Mass Transf. 58(1–2), 540 (2013)
https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.016
143 B. Notario, J. Pinto, E. Solorzano, J. A. De Saja, M. Dumon, and M. A. Rodríguez-Pérez, Experimental validation of the Knudsen effect in nanocellular polymeric foams, Polymer (Guildf.) 56, 57 (2015)
https://doi.org/10.1016/j.polymer.2014.10.006
144 V. Bernardo, J. Martin-de Leon, J. Pinto, R. Verdejo, and M. A. Rodriguez-Perez, Modeling the heat transfer by conduction of nanocellular polymers with bimodal cellular structures, Polymer (Guildf.) 160, 126 (2019)
https://doi.org/10.1016/j.polymer.2018.11.047
145 L. Wu, A slip model for rarefied gas flows at arbitrary Knudsen number, Appl. Phys. Lett. 93(25), 253103 (2008)
https://doi.org/10.1063/1.3052923
146 T. Inamuro, M. Yoshino, and F. Ogino, Accuracy of the lattice Boltzmann method for small Knudsen number with finite Reynolds number, Phys. Fluids 9(11), 3535 (1997)
https://doi.org/10.1063/1.869426
147 S. Fukui and R. Kaneko, A database for interpolation of Poiseuille flow rates for high Knudsen number Lubrication problems, J. Tribol. 112(1), 78 (1990)
https://doi.org/10.1115/1.2920234
148 F. Tao and L. Nguyen, Interactions of gaseous molecules with X-ray photons and photoelectrons in AP-XPS study of solid surface in gas phase, Phys. Chem. Chem. Phys. 20(15), 9812 (2018)
https://doi.org/10.1039/C7CP08429C
149 D. R. Snelling, F. Liu, G. J. Smallwood, and Ö. L. Gülder, Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame, Combust. Flame 136(1–2), 180 (2004)
https://doi.org/10.1016/j.combustflame.2003.09.013
150 K. J. Daun, Thermal accommodation coefficients between polyatomic gas molecules and soot in laser-induced incandescence experiments, Int. J. Heat Mass Transf. 52(21–22), 5081 (2009)
https://doi.org/10.1016/j.ijheatmasstransfer.2009.05.006
151 G. Torzo, G. Delfitto, B. Pecori, and P. Scatturin, A new microcomputer-based laboratory version of the Rüchardt experiment for measuring the ratio γ = Cp/Cv in air, Am. J. Phys. 69(11), 1205 (2001)
https://doi.org/10.1119/1.1405505
152 M. Pyda and B. Wunderlich, Computation of heat capacities of liquid polymers, Macromolecules 32(6), 2044 (1999)
https://doi.org/10.1021/ma9816620
153 G. Reichenauer, U. Heinemann, and H. P. Ebert, Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity, Colloids Surf. A Physicochem. Eng. Asp. 300(1–2), 204 (2007)
https://doi.org/10.1016/j.colsurfa.2007.01.020
154 S. Q. Zeng, A. Hunt, and R. Greif, Mean free path and apparent thermal conductivity of a gas in a porous medium, J. Heat Transfer 117(3), 758 (1995)
https://doi.org/10.1115/1.2822642
155 G. Lu, X. D. Wang, Y. Y. Duan, and X. W. Li, Effects of non-ideal structures and high temperatures on the insulation properties of aerogel-based composite materials, J. Non-Cryst. Solids 357(22–23), 3822 (2011)
https://doi.org/10.1016/j.jnoncrysol.2011.07.022
156 S. Q. Zeng, A. J. Hunt, W. Cao, and R. Greif, Pore size distribution and apparent gas thermal conductivity of silica aerogel, J. Heat Transfer 116(3), 756 (1994)
https://doi.org/10.1115/1.2910933
157 C. Bi, G. H. Tang, and W. Q. Tao, Prediction of the gaseous thermal conductivity in aerogels with nonuniform pore-size distribution, J. Non-Cryst. Solids 358(23), 3124 (2012)
https://doi.org/10.1016/j.jnoncrysol.2012.08.011
158 J. Fricke, X. Lu, P. Wang, D. Büttner, and U. Heinemann, Optimization of monolithic silica aerogel insulants, Int. J. Heat Mass Transf. 35(9), 2305 (1992)
https://doi.org/10.1016/0017-9310(92)90073-2
159 J. Lee, J. Lim, and P. Yang, Ballistic phonon transport in holey silicon, Nano Lett. 15(5), 3273 (2015)
https://doi.org/10.1021/acs.nanolett.5b00495
160 G. Chen, Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles, J. Heat Transfer 118(3), 539 (1996)
https://doi.org/10.1115/1.2822665
161 M. Alshrah, L. H. Mark, C. Zhao, H. E. Naguib, and C. B. Park, Nanostructure to thermal property relationship of resorcinol formaldehyde aerogels using the fractal technique, Nanoscale 10(22), 10564 (2018)
https://doi.org/10.1039/C8NR01375F
162 O. J. Lee, K. H. Lee, T. Jin Yim, S. Young Kim, and K. P. Yoo, Determination of mesopore size of aerogels from thermal conductivity measurements, J. Non-Cryst. Solids 298(2–3), 287 (2002)
https://doi.org/10.1016/S0022-3093(01)01041-9
163 Z. Deng, J. Wang, A. Wu, J. Shen, and B. Zhou, High strength SiO2 aerogel insulation, J. Non-Cryst. Solids 225, 101 (1998)
https://doi.org/10.1016/S0022-3093(98)00106-9
164 S. Spagnol, B. Lartigue, A. Trombe, and V. Gibiat, Thermal modeling of two-dimensional periodic fractal patterns, an application to nanoporous media, Europhysics Letters (EPL) 78(4), 46005(2007)
https://doi.org/10.1209/0295-5075/78/46005
165 K. Swimm, G. Reichenauer, S. Vidi, and H. P. Ebert, Gas pressure dependence of the heat transport in porous solids with pores smaller than 10 μm, Int. J. Thermophys.30(4), 1329 (2009)
https://doi.org/10.1007/s10765-009-0617-z
166 S. Yang, J. Wang, G. Dai, F. Yang, and J. Huang, Controlling macroscopic heat transfer with thermal metamaterials: Theory, experiment and application, Phys. Rep. 908, 1 (2021)
https://doi.org/10.1016/j.physrep.2020.12.006
167 J. Huang, Theoretical Thermotics: Transformation Thermotics and Extended Theories for Thermal Metamaterials, Springer, 2021
https://doi.org/10.1007/978-981-15-2301-4
168 G. Wei, Y. Liu, X. Zhang, F. Yu, and X. Du, Thermal conductivities study on silica aerogel and its composite insulation materials, Int. J. Heat Mass Transf. 54(11–12), 2355 (2011)
https://doi.org/10.1016/j.ijheatmasstransfer.2011.02.026
169 J. J. Zhao, Y. Y. Duan, X. D. Wang, and B. X. Wang, An analytical model for combined radiative and conductive heat transfer in fiber-loaded silica aerogels, J. Non-Cryst. Solids 358(10), 1303 (2012)
https://doi.org/10.1016/j.jnoncrysol.2012.02.037
170 . W. L. Power and T. E. Tullis, Euclidean and fractal models for the description of rock surface roughness, J. Geophys. Res. 96(B1), 415 (1991)
https://doi.org/10.1029/90JB02107
171 R. Vacher, T. Woignier, J. Pelous, and E. Courtens, Structure and self-similarity of silica aerogels, Phys. Rev. B 37(11), 6500 (1988)
https://doi.org/10.1103/PhysRevB.37.6500
172 G. Edgar, Measure, Topology, and Fractal Geometry, Springer New York, 2008
https://doi.org/10.1007/978-0-387-74749-1
173 B. B. Mandelbrot, The Fractal Geometry of Nature, New York: WH Freeman, 1982
174 G. Pia and U. Sanna, Intermingled fractal units model and electrical equivalence fractal approach for prediction of thermal conductivity of porous materials, Appl. Therm. Eng. 61(2), 186 (2013)
https://doi.org/10.1016/j.applthermaleng.2013.07.031
175 G. Pia and U. Sanna, An intermingled fractal units model to evaluate pore size distribution influence on thermal conductivity values in porous materials, Appl. Therm. Eng. 65(1–2), 330 (2014)
https://doi.org/10.1016/j.applthermaleng.2014.01.037
176 X. Huai, W. Wang, and Z. Li, Analysis of the effective thermal conductivity of fractal porous media, Appl. Therm. Eng. 27(17–18), 2815 (2007)
https://doi.org/10.1016/j.applthermaleng.2007.01.031
177 Y. Hayase and T. Ohta, Sierpinski gasket in a reactiondiffusion system, Phys. Rev. Lett. 81(8), 1726 (1998)
https://doi.org/10.1103/PhysRevLett.81.1726
178 Y. Ma, B. Yu, D. Zhang, and M. Zou, A self-similarity model for effective thermal conductivity of porous media, J. Phys. D Appl. Phys. 36(17), 2157 (2003)
https://doi.org/10.1088/0022-3727/36/17/321
179 C. Jiang, K. Davey, and R. Prosser, A tessellated continuum approach to thermal analysis: Discontinuity networks., Contin. Mech. Thermodyn.29(1), 145 (2017)
https://doi.org/10.1007/s00161-016-0523-0
180 G. P. Saracco, G. Gonnella, D. Marenduzzo, and E. Orlandini, Equilibrium and dynamical behavior in the Vicsek model for self-propelled particles under shear, Cent. Eur. J. Phys. 10, 1109 (2012)
https://doi.org/10.2478/s11534-012-0111-2
181 M. van den Berg, Heat equation on the arithmetic von Koch snowflake, Probab. Theory Relat. Fields 118(1), 17 (2000)
https://doi.org/10.1007/PL00008740
182 B. Yu and P. Cheng, Fractal models for the effective thermal conductivity of bidispersed porous media, J. Thermophys. Heat Trans. 16(1), 22 (2002)
https://doi.org/10.2514/2.6669
183 T. Xie, Y. L. He, and Z. J. Hu, Theoretical study on thermal conductivities of silica aerogel composite insulating material, Int. J. Heat Mass Transf. 58(1–2), 540 (2013)
https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.016
184 S. S. Sundarram and W. Li, On thermal conductivity of micro- and nanocellular polymer foams, Polym. Eng. Sci.53(9), 1901 (2013)
https://doi.org/10.1002/pen.23452
185 Y. Amani, A. Takahashi, P. Chantrenne, S. Maruyama, S. Dancette, and E. Maire, Thermal conductivity of highly porous metal foams: Experimental and image based finite element analysis, Int. J. Heat Mass Transf. 122, 1 (2018)
https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.050
186 Y. Amani and A. Öchsner, Finite element simulation of arrays of hollow sphere structures, Materialwiss. Werkstofftech. 46(4–5), 462 (2015)
https://doi.org/10.1002/mawe.201500422
187 H. Zhong and J. R. Lukes, Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling, Phys. Rev. B 74(12), 125403 (2006)
https://doi.org/10.1103/PhysRevB.74.125403
188 S. G. Volz and G. Chen, Molecular dynamics simulation of thermal conductivity of silicon nanowires, Appl. Phys. Lett. 75(14), 2056 (1999)
https://doi.org/10.1063/1.124914
189 W. Zhu, G. Zheng, S. Cao, and H. He, Thermal conductivity of amorphous SiO2 thin film: A molecular dynamics study, Sci. Rep. 8, 1 (2018)
https://doi.org/10.1038/s41598-018-28925-6
190 A. Henry and G. Chen, High thermal conductivity of single polyethylene chains using molecular dynamics simulations, Phys. Rev. Lett. 101(23), 235502 (2008)
https://doi.org/10.1103/PhysRevLett.101.235502
191 Z. Y. Ong and E. Pop, Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO2, Phys. Rev. B 81(15), 155408 (2010)
https://doi.org/10.1103/PhysRevB.81.155408
192 P. K. Schelling, S. R. Phillpot, and P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity, Phys. Rev. B 65(14), 144306 (2002)
https://doi.org/10.1103/PhysRevB.65.144306
193 J. Che, T. Çagin, and W. A. III Goddard, Thermal conductivity of carbon nanotubes, Nanotechnology 11(2), 65 (2000)
https://doi.org/10.1088/0957-4484/11/2/305
194 A. J. H. McGaughey, and M. Kaviany, Thermal conductivity decomposition and analysis using molecular dynamics simulations, Int. J. Heat Mass Transf. 47(8–9), 1799 (2004)
https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.009
195 Y. G. Yoon, R. Car, D. J. Srolovitz, and S. Scandolo, Thermal conductivity of crystalline quartz from classical simulations, Phys. Rev. B 70(1), 012302 (2004)
https://doi.org/10.1103/PhysRevB.70.012302
196 D. P. Sellan, E. S. Landry, J. E. Turney, A. J. H. Mc-Gaughey, and C. H. Amon, Size effects in molecular dynamics thermal conductivity predictions, Phys. Rev. B81(21), 214305 (2010)
https://doi.org/10.1103/PhysRevB.81.214305
197 Y. F. Han, X. L. Xia, H. P. Tan, and H. D. Liu, Modeling of phonon heat transfer in spherical segment of silica aerogel grains, Physica B 420, 58 (2013)
https://doi.org/10.1016/j.physb.2013.03.015
198 T. Zeng and W. Liu, Phonon heat conduction in microand nano-core-shell structures with cylindrical and spherical geometries, J. Appl. Phys. 93(7), 4163 (2003)
https://doi.org/10.1063/1.1556566
199 A. Fakhari and T. Lee, Numerics of the lattice boltzmann method on nonuniform grids: Standard LBM and finitedifference LBM, Comput. Fluids 107, 205 (2015)
https://doi.org/10.1016/j.compfluid.2014.11.013
200 S. Chen and G. D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech. 30(1), 329 (1998)
https://doi.org/10.1146/annurev.fluid.30.1.329
201 G. H. Tang, W. Q. Tao, and Y. L. He, Gas slippage effect on microscale porous flow using the lattice Boltzmann method, Phys. Rev. E 97, 104918 (2005)
202 Y. Peng, Y. T. Chew, and C. Shu, Numerical simulation of natural convection in a concentric annulus between a square outer cylinder and a circular inner cylinder using the Taylor-series-expansion and least-squares-based lattice Boltzmann method, Phys. Rev. E 67(2), 026701 (2003)
https://doi.org/10.1103/PhysRevE.67.026701
203 C. Y. Zhao, L. N. Dai, G. H. Tang, Z. G. Qu, and Z. Y. Li, Numerical study of natural convection in porous media (metals) using lattice Boltzmann method (LBM), Int. J. Heat Fluid Flow 31(5), 925 (2010)
https://doi.org/10.1016/j.ijheatfluidflow.2010.06.001
204 H. Yu, H. Zhang, P. Buahom, J. Liu, X. Xia, and C. B. Park, Prediction of thermal conductivity of micro/nano porous dielectric materials: Theoretical model and impact factors, Energy 233, 121140 (2021)
https://doi.org/10.1016/j.energy.2021.121140
205 S. Wang, Y. Huang, E. Chang, C. Zhao, A. Ameli, H. E. Naguib, and C. B. Park, Evaluation and modeling of electrical conductivity in conductive polymer nanocomposite foams with multiwalled carbon nanotube networks, Chem. Eng. J. 411, 128382 (2021)
https://doi.org/10.1016/j.cej.2020.128382
206 A. Rizvi, R. K. M. Chu, and C. B. Park, Scalable fabrication of thermally insulating mechanically resilient hierarchically porous polymer foams, ACS Appl. Mater. Interfaces 10(44), 38410 (2018)
https://doi.org/10.1021/acsami.8b11375
207 P. Gong, S. Zhai, R. Lee, C. Zhao, P. Buahom, G. Li, and C. B. Park, Environmentally Friendly Polylactic Acid-Based Thermal Insulation Foams Blown with Supercritical CO2, Ind. Eng. Chem. Res. 57(15), 5464 (2018)
https://doi.org/10.1021/acs.iecr.7b05023
208 G. Wang, J. Zhao, G. Wang, L. H. Mark, C. B. Park, and G. Zhao, Low-density and structure-tunable microcellular PMMA foams with improved thermal-insulation and compressive mechanical properties, Eur. Polym. J.95, 382 (2017)
https://doi.org/10.1016/j.eurpolymj.2017.08.025
209 J. R. Howell, R. Siegel, and M. P. Mengüç, Thermal Radiation Heat Transfer, 5th Ed., CRC Press, Taylor & Francis Group, 2010
https://doi.org/10.1201/9781439894552
210 Y. Feng and C. Wang, Discontinuous finite element method applied to transient pure and coupled radiative heat transfer, Int. Commun. Heat Mass Transf. 122, 105156 (2021)
https://doi.org/10.1016/j.icheatmasstransfer.2021.105156
211 . T. Xie and Y. L. He, Heat transfer characteristics of silica aerogel composite materials: Structure reconstruction and numerical modeling, Int. J. Heat Mass Transf. 95, 621 (2016)
https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.025
212 A. V. Gusarov, E. Poloni, V. Shklover, A. Sologubenko, J. Leuthold, S. White, and J. Lawson, Radiative transfer in porous carbon-fiber materials for thermal protection systems, Int. J. Heat Mass Transf. 144, 118582 (2019)
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118582
213 T. J. Hendricks and J. R. Howell, Absorption/scattering coefficients and scattering phase functions in reticulated porous ceramics, J. Heat Transfer 118(1), 79 (1996)
https://doi.org/10.1115/1.2824071
214 B. Quistián-Vázquez, B. Morales-Cruzado, E. Sarmiento-Gómez, and F. G. Pérez-Gutiérrez, Retrieval of absorption or scattering coefficient spectrum (RASCS) program: A tool to monitor optical properties in real time, Lasers Surg. Med. 52(6), 552 (2020)
https://doi.org/10.1002/lsm.23164
215 F. Vaudelle, J. P. L’ Huillier, and M. L. Askoura, Light source distribution and scattering phase function influence light transport in diffuse multi-layered media, Opt. Commun. 392, 268 (2017)
https://doi.org/10.1016/j.optcom.2017.02.001
216 J. E. Sipe, New Green-function formalism for surface optics, J. Opt. Soc. Am. B 4(4), 481 (1987)
https://doi.org/10.1364/JOSAB.4.000481
217 L. Dombrovsky, J. Randrianalisoa, and D. Baillis, Modified two-flux approximation for identification of radiative properties of absorbing and scattering media from directional-hemispherical measurements, J. Opt. Soc. Am. A 23(1), 91 (2006)
https://doi.org/10.1364/JOSAA.23.000091
218 L. Dombrovsky, A. Leonid, G. Krithiga, and L. Wojciech, Combined two-flux approximation and Monte Carlo model for identification of radiative properties of highly scattering dispersed materials, Comput. Therm. Sci.: Int. J. 4, 4 (2012)
https://doi.org/10.1615/ComputThermalScien.2012005025
219 S. Chandrasekhar, The stability of non-dissipative Couette flow in hydromagnetics, Proc. Natl. Acad. Sci. USA 46(2), 253 (1960)
https://doi.org/10.1073/pnas.46.2.253
220 T. K. Kim, J. A. Menart, and H. S. Lee, Nongray radiative gas analyses using the S-N discrete ordinates method, J. Heat Transfer 113(4), 946 (1991)
https://doi.org/10.1115/1.2911226
221 R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, Handbook Numer. Anal. 7, 713 (2000)
https://doi.org/10.1016/S1570-8659(00)07005-8
222 A. Cohen, Wavelet methods in numerical analysis, Handbook Numer. Anal. 7, 417 (2000)
https://doi.org/10.1016/S1570-8659(00)07004-6
223 H. Yu, H. Zhang, Y. Guo, H. Tan, Y. Li, and G. Xie, Thermodynamic analysis of shark skin texture surfaces for microchannel flow, Contin. Mech. Thermodyn. 28(5), 1361 (2016)
https://doi.org/10.1007/s00161-015-0479-5
224 H. Yu, H. Zhang, and X. Xia, A fractal-skeleton model of high porosity macroporous aluminum and its heat transfer characterizes, J. Therm. Anal. Calorim. 1, 1 (2020)
225 H. Yu, H. Zhang, C. Su, K. Wang, and L. Jin, The spectral radiative effect of Si/SiO2 substrate on monolayer aluminum porous microstructure, Therm. Sci. 22(Suppl. 2), 629 (2018)
https://doi.org/10.2298/TSCI171125047Y
226 P. S. Cumber, Improvements to the discrete transfer method of calculating radiative heat transfer, Int. J. Heat Mass Transf. 38(12), 2251 (1995)
https://doi.org/10.1016/0017-9310(94)00354-X
227 M. Fairweather, W. P. Jones, and R. P. Lindstedt, Predictions of radiative transfer from a turbulent reacting jet in a cross-wind, Combust. Flame 89(1), 45 (1992)
https://doi.org/10.1016/0010-2180(92)90077-3
228 E. Solórzano, M. A. Rodriguez-Perez, J. Lázaro, and J. A. de Saja, Influence of solid phase conductivity and cellular structure on the heat transfer mechanisms of cellular materials: Diverse case studies, Adv. Eng. Mater. 11(10), 818 (2009)
https://doi.org/10.1002/adem.200900138
229 L. R. Glicksman, T. Yule, and A. Dyrness, Prediction of the expansion of fluidized beds containing tubes, Chem. Eng. Sci. 46(7), 1561 (1991)
https://doi.org/10.1016/0009-2509(91)87005-W
230 H. P. Tan, L. H. Liu, H. L. Yi, J. M. Zhao, H. Qi, and J. Y. Tan, Recent progress in computational thermal radiative transfer, Chin. Sci. Bull.54(22), 4135 (2009)
https://doi.org/10.1007/s11434-009-0625-1
231 S. Basu and Z. M. Zhang, Maximum energy transfer in near-field thermal radiation at nanometer distances, J. Appl. Phys. 105(9), 093535 (2009)
https://doi.org/10.1063/1.3125453
232 V. Bernardo, J. Martin-de Leon, J. Pinto, U. Schade, and M. A. Rodriguez-Perez, On the interaction of infrared radiation and nanocellular polymers: First experimental determination of the extinction coefficient, Colloids Surf. A 600, 124937 (2020)
https://doi.org/10.1016/j.colsurfa.2020.124937
233 J. Martín-de León, J. L. Pura, V. Bernardo, and M. Á. Rodríguez-Pérez, Transparent nanocellular PMMA: Characterization and modeling of the optical properties, Polymer (Guildf.) 170, 16 (2019)
https://doi.org/10.1016/j.polymer.2019.03.010
234 C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, Hoboken, 2004
235 M. Nieto-Vesperinas, Fundamentals of Mie scattering, Woodhead Publishing, 2020
https://doi.org/10.1016/B978-0-08-102403-4.00007-4
236 S. Shen, A. Narayanaswamy, and G. Chen, Surface phonon polaritons mediated energy transfer between nanoscale gaps, Nano Lett. 9(8), 2909 (2009)
https://doi.org/10.1021/nl901208v
237 S. Shen, A. Henry, J. Tong, R. Zheng, and G. Chen, Polyethylene nanofibres with very high thermal conductivities, Nat. Nanotechnol. 5(4), 251 (2010)
https://doi.org/10.1038/nnano.2010.27
238 X. Liu, L. Wang, and Z. M. Zhang, Near-field thermal radiation: Recent progress and outlook, Nanoscale Microscale Thermophys. Eng. 19(2), 98 (2015)
https://doi.org/10.1080/15567265.2015.1027836
239 H. Yu, H. Zhang, H. Wang, and D. Zhang, The equivalent thermal conductivity of the micro/nano scaled periodic cubic frame silver and its thermal radiation mechanism analysis, Energies 14, 1 (2021)
https://doi.org/10.3390/en14144158
240 B. Liu, F. Sun, X. Chen, and X. Xia, Prediction of radiation spectra of composite with periodic micron porous structure, Numer. Heat Transf. B 78(1), 54 (2020)
https://doi.org/10.1080/10407790.2020.1746594
241 S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarski, Principles of Statistical Radiophysics, Springer-Verlag, 1987
https://doi.org/10.1007/978-3-642-69201-7
242 H. Yu, H. Zhang, Z. Dai, and X. Xia, Design and analysis of low emissivity radiative cooling multilayer films based on effective medium theory, ES Energy & Environment 6, 69 (2019)
243 L. X. Ma, C. C. Wang, and J. Y. Tan, Light scattering by densely packed optically soft particle systems, with consideration of the particle agglomeration and dependent scattering, Appl. Opt. 58(27), 7336 (2019)
https://doi.org/10.1364/AO.58.007336
244 S. Basu, Z. Zhang, and C. Fu, Review of near-field thermal radiation and its application to energy conversion, Int. J. Energy Res. 33(13), 1203 (2009)
https://doi.org/10.1002/er.1607
245 X. Wu, C. Fu, and Z. M. Zhang, Effect of orientation on the directional and hemispherical emissivity of hyperbolic metamaterials, Int. J. Heat Mass Transf. 135, 1207 (2019)
https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.066
246 M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Elsevier, 2013
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed