Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (3): 34501   https://doi.org/10.1007/s11467-021-1121-6
  本期目录
Optimal gamma-ray selections for monochromatic line searches with DAMPE
Zun-Lei Xu1,2, Kai-Kai Duan1, Wei Jiang1, Shi-Jun Lei1, Xiang Li1,2(), Zhao-Qiang Shen1(), Tao Ma1,2, Meng Su1, Qiang Yuan1,2, Chuan Yue1, Yi-Zhong Fan1,2, Jin Chang1,2
1. Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China
2. School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, China
 全文: PDF(1063 KB)  
Abstract

The DArk Matter Particle Explorer (DAMPE) is a space high-energy cosmic-ray detector covering a wide energy band with a high energy resolution. One of the key scientific goals of DAMPE is to carry out indirect detection of dark matter by searching for high-energy gamma-ray line structure. To promote the sensitivity of gamma-ray line search with DAMPE, it is crucial to improve the acceptance and energy resolution of gamma-ray photons. In this paper, we quantitatively proved that the photon sample with the largest ratio of acceptance to energy resolution is optimal for line search. We therefore developed a line-search sample specifically optimized for the line-search. Meanwhile, in order to increase the statistics, we also selected the so-called BGO-only photons that convert into e+e- pairs only in the BGO calorimeter. The standard, the line-search, and the BGO-only photon samples are then tested for line-search individually and collectively. The results show that a significantly improved limit could be obtained from an appropriate combination of the date sets, and the increase is about 20% for the highest case compared with using the standard sample only.

Key wordsDArk Matter Particle Explorer (DAMPE)    gamma-ray    line-search
收稿日期: 2021-07-30      出版日期: 2021-11-19
Corresponding Author(s): Xiang Li,Zhao-Qiang Shen   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(3): 34501.
Zun-Lei Xu, Kai-Kai Duan, Wei Jiang, Shi-Jun Lei, Xiang Li, Zhao-Qiang Shen, Tao Ma, Meng Su, Qiang Yuan, Chuan Yue, Yi-Zhong Fan, Jin Chang. Optimal gamma-ray selections for monochromatic line searches with DAMPE. Front. Phys. , 2022, 17(3): 34501.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1121-6
https://academic.hep.com.cn/fop/CN/Y2022/V17/I3/34501
1 J. Chang , DArk Matter Particle Explorer: The first Chinese cosmic ray and hard γ-ray detector in space, Chin. J. Space Sci. 34, 550 (2014)
https://doi.org/10.11728/cjss2014.05.550
2 J. Chang , et al. (DAMPE Collaborabtion), The DArk Matter Particle Explorer mission, Astropart. Phys. 95, 6 (2017)
https://doi.org/10.1016/j.astropartphys.2017.08.005
3 Y. Yu , et al. The plastic scintillator detector for DAMPE, Astropart. Phys. 94, 1 (2017) arXiv: 1703.00098 [astroph.IM]
https://doi.org/10.1016/j.astropartphys.2017.06.004
4 Z. Zhang , et al. , Design of a high dynamic range photomultiplier base board for the BGO ECAL of DAMPE, Nucl. Instrum. Meth. A 780, 21 (2015)
https://doi.org/10.1016/j.nima.2015.01.036
5 Z. Zhang , et al. , The calibration and electron energy reconstruction of the BGO ECAL of the DAMPE detector, Nucl. Instrum. Meth. A 836, 98 (2016)
https://doi.org/10.1016/j.nima.2016.08.015
6 Y. Y. Huang , T. Ma , C. Yue , Y. Zhang , J. Chang , T. K. Dong , and Y. Q. Zhang , Calibration and performance of the neutron detector onboard of the DAMPE mission, Res. Astron. Astrophys. 20, 153 (2020), arXiv preprint arXiv:1606.01540
https://doi.org/10.1088/1674-4527/20/9/153
7 G. Ambrosi , et al. (DAMPE Collaborabtion), Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons, Nature 552, 63 (2017), arXiv: 1711.10981 [astro-ph.HE]
https://doi.org/10.1038/nature24475
8 Q. An , et al. (DAMPE Collaborabtion), Measurement of the cosmic-ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite, Sci. Adv. 5, eaax3793 (2019), arXiv: 1909.12860 [astro-ph.HE]
https://doi.org/10.1126/sciadv.aax3793
9 F. Alemanno , et al. (DAMPE Collaborabtion), Measurement of the cosmic ray helium energy spectrum from 70 GeV to 80 TeV with the DAMPE space mission, Phys. Rev. Lett. 126, 201102 (2021), arXiv: 2105.09073 [astroph.HE]
https://doi.org/10.1103/PhysRevLett.126.201102
10 C. Yue , et al. Implications on the origin of cosmic rays in light of 10 TV spectral softenings, Front. Phys. (Beijing) 15, 24601 (2020), arXiv: 1909.12857 [astro-ph.HE]
https://doi.org/10.1007/s11467-019-0946-8
11 Q. Yuan , B. Q. Qiao , Y. Q. Guo , Y. Z. Fan , and X. J. Bi , Nearby source interpretation of differences among light and medium composition spectra in cosmic rays, Front. Phys. (Beijing) 16, 24501 (2021), arXiv: 2007.01768 [astroph.HE]
https://doi.org/10.1007/s11467-020-0990-4
12 Q. Yuan and L. Feng , Dark Matter Particle Explorer observations of high-energy cosmic ray electrons plus positrons and their physical implications, Sci. China Phys. Mech. Astron. 61, 101002 (2018), arXiv: 1807.11638 [astroph.HE]
https://doi.org/10.1007/s11433-018-9226-y
13 E. Charles , M. Sánchez-Conde , B. Anderson , R. Caputo , et al., Sensitivity projections for dark matter searches with the Fermi large area telescope, Phys. Rep. 636, 1 (2016), arXiv: 1605.02016
https://doi.org/10.1016/j.physrep.2016.05.001
14 X. Huang , Q. Yuan , P. F. Yin and X. Chen , Constraints on the dark matter annihilation scenario of Fermi 130 GeV gamma-ray line emission by continuous gammarays, Milky Way halo, galaxy clusters and dwarf galaxies observations, J. Cosmol. Astropart. Phys. 11, 048 (2012), arXiv: 1208.0267
https://doi.org/10.1088/1475-7516/2012/11/048
15 B. Anderson , S. Zimmer , J. Conrad , M. Gustafsson , M. Sánchez-Conde , and R. Caputo Search for gamma-ray lines towards galaxy clusters with the Fermi-LAT, J. Cosmol. Astropart. Phys. 02, (2), 026, arXiv: 1511.00014
https://doi.org/10.1088/1475-7516/2016/02/026
16 Y. F. Liang , Z. Q. Xia , K. K. Duan , Z. Q. Shen , X. Li , and Y. Z. Fan , Limits on dark matter annihilation cross sections to gamma-ray lines with subhalo distributions in N-body simulations and Fermi LAT data, Phys. Rev. D 95, 063531 (2017), arXiv: 1703.07078
https://doi.org/10.1103/PhysRevD.95.063531
17 S. Li , Z. Q. Xia , Y. F. Liang , K. K. Duan , et al., Search for line-like signals in the all-sky Fermi-LAT data, Phys. Rev. D 99, 123519 (2019)
https://doi.org/10.1103/PhysRevD.99.123519
18 M. N. Mazziotta , F. Loparco , D. Serini , A. Cuoco , et al., Search for dark matter signatures in the gamma-ray emission towards the Sun with the Fermi Large Area Telescope, Phys. Rev. D 102, 022003 (2020), arXiv: 2006.04114
https://doi.org/10.1103/PhysRevD.102.022003
19 Y. F. Liang , Z. Q. Shen , X. Li , Y. Z. Fan , et al., Search for a gamma-ray line feature from a group of nearby galaxy clusters with Fermi LAT Pass 8 data, Phys. Rev. D 93, 103525 (2016), arXiv: 1602.06527
https://doi.org/10.1103/PhysRevD.93.103525
20 Z. Q. Shen , Z. Q. Xia , and Y. Z. Fan , Search for linelike and box-shaped spectral features from nearby galaxy clusters with 11.4 years of Fermi-LAT data, Astrophys. J. 920, 1 (2021), arXiv: 2108.00363 [astro-ph.HE]
https://doi.org/10.3847/1538-4357/ac19ae
21 G. Ambrosi , et al. (DAMPE Collaborabtion), The on-orbit calibration of DArk Matter Particle Explorer, Astropart. Phys. 106, 18 (2019), arXiv: 1907.02173 [astro-ph.IM]
https://doi.org/10.1016/j.astropartphys.2018.10.006
22 Z. L. Xu , et al. An algorithm to resolve γ-rays from charged cosmic rays with DAMPE, Res. Astron. Astrophys. 18, (3), 027 (2018), arXiv: 1712.02939 [physics.ins-det]
https://doi.org/10.1088/1674-4527/18/3/27
23 K. K. Duan , et al. DmpIRFs and DmpST: DAMPE instrument response functions and science tools for gammaray data analysis, Res. Astron. Astrophys. 19, 132 (2019), arXiv: 1904.13098 [astro-ph.HE]
https://doi.org/10.1088/1674-4527/19/9/132
24 Y. L. Zhang , et al., Evaluation of particle acceptance for space particle telescope, Chin. Phys. C 35, 774 (2011)
https://doi.org/10.1088/1674-1137/35/8/014
25 M. Ackermann , M. Ajello , A. Albert , A. Allafort , L. Baldini , et al., (Fermi-LAT Collaboration), Search for gammaray spectral lines with the Fermi Large Area Telescope and dark matter implications, Phys. Rev. D 88, 082002 (2013), arXiv: 1305.5597
https://doi.org/10.1103/PhysRevD.88.082002
26 A. Albert , G. A. Gómez-Vargas , M. Grefe , C. Muñoz , et al., Search for 100 MeV to 10 GeV γ-ray lines in the FermiLAT data and implications for gravitino dark matter in the µvSSM, J. Cosmol. Astropart. Phys. 10, (10), 023 (2014), arXiv: 1406.3430 [astro-ph.HE]
https://doi.org/10.1088/1475-7516/2014/10/023
27 Y. -Q. Zhang , et al., Design and on-orbit status of the trigger system for the DAMPE mission, Res. Astron Astrophys. 19 (9), 123 (2019)
https://doi.org/10.1088/1674-4527/19/9/123
28 J. Einasto , On the construction of a composite model for the galaxy and on the determination of the system of galactic parameters, Trudy Astrofizicheskogo Instituta Alma-Ata 5, 87 (1965)
29 J. F. Navarro , A. Ludlow , V. Springel , J. Wang , et al., The diversity and similarity of simulated cold dark matter haloes, Mon. Not. R. Astron. Soc. 402, 21 (2010), arXiv: 0810.1522
https://doi.org/10.1111/j.1365-2966.2009.15878.x
30 F. Acero , M. Ackermann , M. Ajello , A. Albert , et al. (Fermi-LAT Collaboration), Development of the model of galactic interstellar emission for standard point-source analysis of Fermi large area telescope data, Astrophys. J. Suppl. Ser. 223, 26 (2016), arXiv: 1602.07246 [astroph.HE]
https://doi.org/10.3847/0067-0049/223/2/26
31 S. Abdollahi , F. Acero , M. Ackermann , M. Ajello , W. B. Atwood , et al. (Fermi-LAT Collaboration), Fermi Large Area Telescope fourth source catalog, Astrophys. J. Suppl. Ser. 247, 33 (2020), arXiv: 1902.10045 [astro-ph.HE]
https://doi.org/10.3847/1538-4365/ab6bcb
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed