Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (3): 32502   https://doi.org/10.1007/s11467-021-1129-y
  本期目录
Isotope separation of Potassium with a magneto–optical combined method
Zixuan Zeng, Shangjin Li, Bo Yan()
Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device of Physics Department, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1704 KB)  
Abstract

Due to the similar physical and chemical properties, isotopes are usually hard to separate. On the other hand, the isotope shifts are very well separated in a high-resolution spectrum, making them possible to be addressed individually by lasers, thus separated. Here we report such an isotope separation experiment with Potassium atoms. The isotopes are independently optical pumped to the desired spin states, and then separated with a Stern–Gerlach scheme. A micro-capillary oven is used to collimate the atomic beam, and a Halbach-type magnet array is used to deflect the desired atoms. Finally, the 40K is enriched by two orders of magnitude. This magneto–optical combined method provides an effective way to separate isotopes and can be extended to other elements if the relevant optical pumping scheme is feasible.

Key wordscold atom    isotope separation    optical pumping
收稿日期: 2021-06-17      出版日期: 2021-11-23
Corresponding Author(s): Bo Yan   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(3): 32502.
Zixuan Zeng, Shangjin Li, Bo Yan. Isotope separation of Potassium with a magneto–optical combined method. Front. Phys. , 2022, 17(3): 32502.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1129-y
https://academic.hep.com.cn/fop/CN/Y2022/V17/I3/32502
1 K. A. Lyakhov , H. J. Lee , and A. N. Pechen , Some issues of industrial scale boron isotopes separation by the laser assisted retarded condensation (SILARC) method, Separ. Purif. Tech. 176, 402 (2017)
https://doi.org/10.1016/j.seppur.2016.12.021
2 T. R. Mazur , B. Klappauf , and M. G. Raizen , Demonstration of magnetically activated and guided isotope separation, Nat. Phys. 10 (8), 601 (2014)
https://doi.org/10.1038/nphys3013
3 H. M. Zhang and S. G. Li , Deep carbon recycling and isotope tracing: Review and prospect, Sci. China Earth Sci. 55, 1929 (2012)
https://doi.org/10.1007/s11430-012-4532-y
4 E. J. Bartelink and L. A. Chesson , Recent applications of isotope analysis to forensic anthropology, Forensic Sci. Res. 4 (1), 29 (2019)
https://doi.org/10.1080/20961790.2018.1549527
5 D. J. Wilkinson , Historical and contemporary stable isotope tracer approaches to studying mammalian protein metabolism, Mass Spectrom. Rev. 37 (1), 57 (2018)
https://doi.org/10.1002/mas.21507
6 R. A. Muller , Radioisotope dating wit a cyclotron, Science 196 (4289), 489 (1977)
https://doi.org/10.1126/science.196.4289.489
7 C. Y. Chen , Y. M. Li , K. Bailey , T. P. O’Connor , L. Young , and Z. Lu , Ultrasensitive isotope trace analyses with a magneto–optical trap, Science 286 (5442), 1139 (1999)
https://doi.org/10.1126/science.286.5442.1139
8 A. L. Yergey and A. K. Yergey , Preparative scale mass spectrometry: A brief history of the calutron, J. Am. Soc. Mass Spectrom. 8 (9), 943 (1997)
https://doi.org/10.1016/S1044-0305(97)00123-2
9 L. O. Love , Electromagnetic separation of isotopes at Oak Ridge, Science 182 (4110), 343 (1973)
https://doi.org/10.1126/science.182.4110.343
10 V. S. Letokhov , Laser isotope separation, Nature 277 (5698), 605 (1979)
https://doi.org/10.1038/277605a0
11 T. Arisawa , Y. Maruyama , Y. Suzuki , and K. Shiba , Lithium isotope separation by laser, Appl. Phys. B 28, 73 (1982)
https://doi.org/10.1007/BF00693895
12 J. A. Paisner , Atomic vapor laser isotope separation, Appl. Phys. B 46 (3), 253 (1988)
https://doi.org/10.1007/BF00692883
13 P. Greenland , Laser isotope separation, Contemp. Phys. 31 (6), 405 (1990)
https://doi.org/10.1080/00107519008213790
14 T. Kieck , H. Dorrer , C. E. Dullmann , V. Gadelshin , F. Schneider , and K. Wendt , Highly efficient isotope separation and ion implantation of 163Ho for the ECHo project, Nucl. Instrum. Methods Phys. Res. A 945, 162602 (2019)
https://doi.org/10.1016/j.nima.2019.162602
15 A. Bernhardt , Isotope separation by laser deflection of an atomic beam, Appl. Phys. (Berl.) 9 (1), 19 (1976)
https://doi.org/10.1007/BF00901905
16 L. Li , Y. Wang , and M. Li , Separation of Li isotopes by laser defection of atomic beams, Chin. Phys. 3 (1), 155 (1983)
17 X. Zhu , G. Huang , G. Mei , and D. Yang , Laser isotope enrichment of lithium by magnetic deflection of a polarized atomic beam, J. Phys. At. Mol. Opt. Phys. 25 (15), 3307 (1992)
https://doi.org/10.1088/0953-4075/25/15/012
18 M. Jerkins , I. Chavez , U. Even , and M. G. Raizen , Efficient isotope separation by single-photon atomic sorting, Phys. Rev. A 82 (3), 033414 (2010)
https://doi.org/10.1103/PhysRevA.82.033414
19 M. G. Raizen and B. Klappauf , Magnetically activated and guided isotope separation, New J. Phys. 14 (2), 023059 (2012)
https://doi.org/10.1088/1367-2630/14/2/023059
20 B. DeMarco and D. Jin , Onset of Fermi degeneracy in a trapped atomic gas, Science 285 (5434), 1703 (1999)
https://doi.org/10.1126/science.285.5434.1703
21 E. Haller , J. Hudson , A. Kelly , D. A. Cotta , B. Peaudecerf , G. D. Bruce , and S. Kuhr , Single-atom imaging of fermions in a quantum-gas microscope, Nat. Phys. 11 (9), 738 (2015)
https://doi.org/10.1038/nphys3403
22 L. W. Cheuk , M. A. Nichols , M. Okan , T. Gersdorf , V. V. Ramasesh , W. S. Bakr , T. Lompe , and M. W. Zwierlein , Quantum-gas microscope for fermionic atoms, Phys. Rev. Lett. 114 (19), 193001 (2015)
https://doi.org/10.1103/PhysRevLett.114.193001
23 M. A. Nichols , L. W. Cheuk , M. Okan , T. R. Hartke , E. Mendez , T. Senthil , E. Khatami , H. Zhang , and M. W. Zwierlein , Spin transport in a Mott insulator of ultracold fermions, Science 363 (6425), 383 (2019)
https://doi.org/10.1126/science.aat4387
24 T. G. Tiecke , Properties of potassium, University of Amsterdam, The Netherlands, Thesis 2010, pp 12–14
25 R. Senaratne , S. V. Rajagopal , Z. A. Geiger , K. M. Fujiwara , V. Lebedev , and D. M. Weld , Effusive atomic oven nozzle design using an aligned microcapillary array, Rev. Sci. Instrum. 86 (2), 023105 (2015)
https://doi.org/10.1063/1.4907401
26 P. Rosenberg , Collision cross sections of K atoms and K2 molecules in gases, Phys. Rev. 55 (12), 1267 (1939)
https://doi.org/10.1103/PhysRev.55.1267
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed