Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (4): 42502   https://doi.org/10.1007/s11467-021-1137-y
  本期目录
Simulation of EOM-based frequency-chirped laser slowing of MgF radicals
Kang Yan1, RuoXi Gu1, Di Wu1, Jin Wei1, Yong Xia1,2,3(), Jianping Yin1()
1. State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
2. NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai 200062, China
3. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
 全文: PDF(1347 KB)  
Abstract

Here we propose a scheme to slow MgF molecules by using EOM-based frequency-chirped radiation pressure slowing. The scheme well addresses the need for a rapid chirp rate while light molecules are being laser slowed, whose scattering rate and recoil velocity are large. Two EOMs are used to compensate the rapidly changing Doppler shifts arised from the movement of molecules, and to cover the hyperfine energy structure of MgF, respectively. Based the scattering rate maps calculated from an optical Bloch equation model, individual molecule trajectories are simulated by using a semi-classical three-dimensional Monte Carlo approach. We show how the modulation configuration of EOM and the magnetic field influence the slowing results. The study shows that a cryogenic buffer gas-cooled MgF beam source is possible to be slowed down with a number of ~ 1.4 × 106–107, and the final forward speed peaks at ~ 10 m/s near the capture velocity of a molecular MOT.

Key wordslaser cooling of molecule    MgF molecule    laser slowing    dark state    type-II transition
收稿日期: 2021-10-23      出版日期: 2021-12-16
Corresponding Author(s): Kang Yan   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(4): 42502.
Kang Yan, RuoXi Gu, Di Wu, Jin Wei, Yong Xia, Jianping Yin. Simulation of EOM-based frequency-chirped laser slowing of MgF radicals. Front. Phys. , 2022, 17(4): 42502.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1137-y
https://academic.hep.com.cn/fop/CN/Y2022/V17/I4/42502
1 J. Doyle, B. Friedrich, R. V. Krems, and F. Masnou-Seeuws, Editorial: Quo vadis, cold molecules? Eur. Phys. J. D 31(2), 149 (2004)
https://doi.org/10.1140/epjd/e2004-00151-x
2 L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, Cold and ultracold molecules: Science, technology and applications, New J. Phys. 11(5), 055049 (2009)
https://doi.org/10.1088/1367-2630/11/5/055049
3 The ACME Collaboration, J. Baron, W. C. Campbell, D. DeMille, J. M. Doyle, G. Gabrielse, Y. V. Gurevich, P. W. Hess, N. R. Hutzler, E. Kirilov, I. Kozyryev, B. R. O’Leary, C. D. Panda, M. F. Parsons, E. S. Petrik, B. Spaun, A. C. Vutha, and A. D. West, Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343(6168), 269 (2014)
https://doi.org/10.1126/science.1248213
4 J. J. Hudson, D. M. Kara, I. J. Smallman, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, Improved measurement of the shape of the electron, Nature 473(7348), 493 (2011)
https://doi.org/10.1038/nature10104
5 S. Ospelkaus, K. K. Ni, D. Wang, M. H. G. De Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, Quantum-state controlled chemical reactions of ultracold potassium–rubidium molecules, Science 327(5967), 853 (2010)
https://doi.org/10.1126/science.1184121
6 D. S. Jin and J. Ye, Introduction to ultracold molecules: New frontiers in quantum and chemical physics, Chem. Rev. 112(9), 4801 (2012)
https://doi.org/10.1021/cr300342x
7 D. DeMille, Quantum computation with trapped polar molecules, Phys. Rev. Lett. 88(6), 067901 (2002)
https://doi.org/10.1103/PhysRevLett.88.067901
8 A. André, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl, R. J. Schoelkopf, and P. Zoller, A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators, Nat. Phys. 2(9), 63. (2006)
https://doi.org/10.1038/nphys386
9 P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf, and P. Zoller, Hybrid quantum processors: Molecular ensembles as quantum memory for solid state circuits, Phys. Rev. Lett. 97(3), 033003 (2006)
https://doi.org/10.1103/PhysRevLett.97.033003
10 A. Micheli, G. K. Brennen, and P. Zoller, A toolbox for lattice-spin models with polar molecules, Nat. Phys. 2(5), 34. (2006)
https://doi.org/10.1038/nphys287
11 D. Wang, M. D. Lukin, and E. Demler, Quantum fluids of self-assembled chains of polar molecules, Phys. Rev. Lett. 97(18), 180413 (2006)
https://doi.org/10.1103/PhysRevLett.97.180413
12 B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, Observation of dipolar spin-exchange interactions with lattice-confined polar molecules, Nature 501(7468), 521 (2013)
https://doi.org/10.1038/nature12483
13 Y. Liu and L. Luo, Molecular collisions: From near-cold to ultra-cold, Front. Phys. 16(4), 42300 (2021)
https://doi.org/10.1007/s11467-020-1037-6
14 E. S. Shuman, J. F. Barry, and D. DeMille, Laser cooling of a diatomic molecule, Nature 467(7317), 820 (2010)
https://doi.org/10.1038/nature09443
15 E. B. Norrgard, D. J. McCarron, M. H. Steinecker, M. R. Tarbutt, and D. DeMille, Submillikelvin dipolar molecules in a radio-frequency magneto-optical trap, Phys. Rev. Lett. 116(6), 063004 (2016)
https://doi.org/10.1103/PhysRevLett.116.063004
16 M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, and J. Ye, 2D magneto-optical trapping of diatomic molecules, Phys. Rev. Lett. 110(14), 143001 (2013)
https://doi.org/10.1103/PhysRevLett.110.143001
17 A. L. Collopy, S. Ding, Y. Wu, I. A. Finneran, L. Anderegg, B. L. Augenbraun, J. M. Doyle, and J. Ye, 3D magnetooptical trap of yttrium monoxide, Phys. Rev. Lett. 121(21), 21320. (2018)
https://doi.org/10.1103/PhysRevLett.121.213201
18 L. Anderegg, B. L. Augenbraun, E. Chae, B. Hemmerling, N. R. Hutzler, A. Ravi, A. Collopy, J. Ye, W. Ketterle, and J. M. Doyle, Radio frequency magneto-optical trapping of CaF with high density, Phys. Rev. Lett. 119(10), 103201 (2017)
https://doi.org/10.1103/PhysRevLett.119.103201
19 I. Kozyryev, L. Baum, K. Matsuda, B. L. Augenbraun, L. Anderegg, A. P. Sedlack, and J. M. Doyle, Sisyphus laser cooling of a polyatomic molecule, Phys. Rev. Lett. 118(17), 17320. (2017)
https://doi.org/10.1103/PhysRevLett.118.173201
20 H. J. Williams, L. Caldwell, N. J. Fitch, S. Truppe, J. Rodewald, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Magnetic trapping and coherent control of laser-cooled molecules, Phys. Rev. Lett. 120(16), 163201 (2018)
https://doi.org/10.1103/PhysRevLett.120.163201
21 L. Anderegg, B. L. Augenbraun, Y. Bao, S. Burchesky, L. W. Cheuk, W. Ketterle, and J. M. Doyle, Laser cooling of optically trapped molecules, Nat. Phys. 14(9), 890 (2018)
https://doi.org/10.1038/s41567-018-0191-z
22 S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Molecules cooled below the Doppler limit, Nat. Phys. 13(12), 1173 (2017)
https://doi.org/10.1038/nphys4241
23 L. W. Cheuk, L. Anderegg, B. L. Augenbraun, Y. Bao, S. Burchesky, W. Ketterle, and J. M. Doyle, Λ-enhanced imaging of molecules in an optical trap, Phys. Rev. Lett. 121(8), 083201 (2018)
https://doi.org/10.1103/PhysRevLett.121.083201
24 L. Caldwell, J. A. Devlin, H. J. Williams, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Deep laser cooling and efficient magnetic compression of molecules, Phys. Rev. Lett. 123(3), 033202 (2019)
https://doi.org/10.1103/PhysRevLett.123.033202
25 H. Son, J. J. Park, W. Ketterle, and A. O. Jamison, Collisional cooling of ultracold molecules, Nature 580(7802), 19. (2020)
https://doi.org/10.1038/s41586-020-2141-z
26 S. A. Malinovskaya, Laser cooling using adiabatic rapid passage, Front. Phys. 16(5), 52601 (2021)
https://doi.org/10.1007/s11467-021-1071-z
27 Q. Liang, T. Chen, W. Bu, Y. Zhang, and B. Yan, Laser cooling with adiabatic passage for type-ii transitions, Front. Phys. 16(3), 32501 (2021)
https://doi.org/10.1007/s11467-020-1019-8
28 R. L. McNally, I. Kozyryev, S. Vazquez-Carson, K. Wenz, T. Wang, and T. Zelevinsky, Optical cycling, radiative deflection and laser cooling of barium monohydride (138Ba1H), New J. Phys. 22(8), 083047 (2020)
https://doi.org/10.1088/1367-2630/aba3e9
29 J. Lim, J. R. Almond, M. A. Trigatzis, J. A. Devlin, N. J. Fitch, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, Laser cooled YbF molecules for measuring the electron’s electric dipole moment, Phys. Rev. Lett. 120(12), 123201 (2018)
https://doi.org/10.1103/PhysRevLett.120.123201
30 T. Chen, W. Bu, and B. Yan, Radiative deflection of a BaF molecular beam via optical cycling, Phys. Rev. A 96(5), 05340. (2017)
https://doi.org/10.1103/PhysRevA.96.053401
31 P. Aggarwal, H. L. Bethlem, A. Borschevsky, M. Denis, K. Esajas, P. A. B. Haase, Y. Hao, S. Hoekstra, K. Jungmann, T. B. Meijknecht, M. C. Mooij, R. G. E. Timmermans, W. Ubachs, L. Willmann, and A. Zapara, Measuring the electric dipole moment of the electron in BaF, Eur. Phys. J. D 72(11), 197 (2018)
https://doi.org/10.1140/epjd/e2018-90192-9
32 R. Albrecht, M. Scharwaechter, T. Sixt, L. Hofer, and T. Langen, Buffer-gas cooling, high-resolution spectroscopy, and optical cycling of barium monofluoride molecules, Phys. Rev. A 101(1), 013413 (2020)
https://doi.org/10.1103/PhysRevA.101.013413
33 S. Hofsäss, M. Doppelbauer, S. C. Wright, S. Kray, B. G. Sartakov, J. Pérez-Ríos, G. Meijer, and S. Truppe, Optical cycling of AlF molecules, New J. Phys. 23(7), 075001 (2021)
https://doi.org/10.1088/1367-2630/ac06e5
34 M. Xia, R. Gu, K. Yan, D. Wu, L. Xu, Y. Xia, and J. Yin, Destabilization of dark states in MgF molecules, Phys. Rev. A 103(1), 013321 (2021)
https://doi.org/10.1103/PhysRevA.103.013321
35 M. R. Tarbutt and T. C. Steimle, Modeling magnetooptical trapping of CaF molecules, Phys. Rev. A 92(5), 053401 (2015)
https://doi.org/10.1103/PhysRevA.92.053401
36 H. J. Williams, S. Truppe, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Characteristics of a magneto-optical trap of molecules, New J. Phys. 19(11), 113035 (2017)
https://doi.org/10.1088/1367-2630/aa8e52
37 S. Truppe, H. J. Williams, N. J. Fitch, M. Hambach, T. E. Wall, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, An intense, cold, velocity-controlled molecular beam by frequency-chirped laser slowing, New J. Phys. 19(2), 02200. (2017)
https://doi.org/10.1088/1367-2630/aa5ca2
38 J. F. Barry, E. S. Shuman, E. B. Norrgard, and D. De-Mille, Laser radiation pressure slowing of a molecular beam, Phys. Rev. Lett. 108(10), 103002 (2012)
https://doi.org/10.1103/PhysRevLett.108.103002
39 B. Hemmerling, E. Chae, A. Ravi, L. Anderegg, G. K. Drayna, N. R. Hutzler, A. L. Collopy, J. Ye, W. Ketterle, and J. M. Doyle, Laser slowing of CaF molecules to near the capture velocity of a molecular mot, J. Phys. B 49(17), 17400. (2016)
https://doi.org/10.1088/0953-4075/49/17/174001
40 V. Zhelyazkova, A. Cournol, T. E. Wall, A. Matsushima, J. J. Hudson, E. A. Hinds, M. R. Tarbutt, and B. E. Sauer, Laser cooling and slowing of CaF molecules, Phys. Rev. A 89(5), 053416 (2014)
https://doi.org/10.1103/PhysRevA.89.053416
41 M. Yeo, M. T. Hummon, A. L. Collopy, B. Yan, B. Hemmerling, E. Chae, J. M. Doyle, and J. Ye, Rotational state microwave mixing for laser cooling of complex diatomic molecules, Phys. Rev. Lett. 114(22), 223003 (2015)
https://doi.org/10.1103/PhysRevLett.114.223003
42 M. Petzold, P. Kaebert, P. Gersema, M. Siercke, and S. Ospelkaus, A zeeman slower for diatomic molecules, New J. Phys. 20(4), 042001 (2018)
https://doi.org/10.1088/1367-2630/aab9f5
43 P. Kaebert, M. Stepanova, T. Poll, M. Petzold, S. Xu, M. Siercke, and S. Ospelkaus, Characterizing the zeeman slowing force for 40Ca19F molecules, New J. Phys. 23(9), 09301. (2021)
https://doi.org/10.1088/1367-2630/ac1ed7
44 C. C. Bradley, J. G. Story, J. J. Tollett, J. Chen, N. W. M. Ritchie, and R. G. Hulet, Laser cooling of lithium using relay chirp cooling, Opt. Lett. 17(5), 349 (1992)
https://doi.org/10.1364/OL.17.000349
45 B. K. Stuhl, B. C. Sawyer, D. Wang, and J. Ye, Magnetooptical trap for polar molecules, Phys. Rev. Lett. 101(24), 243002 (2008)
https://doi.org/10.1103/PhysRevLett.101.243002
46 L. Xu, Y. Yin, B. Wei, Y. Xia, and J. Yin, Calculation of vibrational branching ratios and hyperfine structure of 24Mg19F and its suitability for laser cooling and magnetooptical trapping, Phys. Rev. A 93(1), 013408 (2016)
https://doi.org/10.1103/PhysRevA.93.013408
47 K. Yan, B. Wei, Y. Yin, S. Xu, L. Xu, M. Xia, R. Gu, Y. Xia, and J. Yin, A new route for laser cooling and trapping of cold molecules: Intensity-gradient cooling of MgF molecules using localized hollow beams, New J. Phys. 22(3), 033003 (2020)
https://doi.org/10.1088/1367-2630/ab7253
48 N. R. Hutzler, H. I. Lu, and J. M. Doyle, The buffer gas beam: An intense, cold, and slow source for atoms and molecules, Chem. Rev. 112(9), 4803 (2012)
https://doi.org/10.1021/cr200362u
49 J. F. Barry, E. S. Shuman, and D. DeMille, A bright, slow cryogenic molecular beam source for free radicals, Phys. Chem. Chem. Phys. 13(42), 18936 (2011)
https://doi.org/10.1039/c1cp20335e
50 N. E. Bulleid, S. M. Skoff, R. J. Hendricks, B. E. Sauer, E. A. Hinds, and M. R. Tarbutt, Characterization of a cryogenic beam source for atoms and molecules, Phys. Chem. Chem. Phys. 15(29), 12299 (2013)
https://doi.org/10.1039/c3cp51553b
51 D. J. Berkeland and M. G. Boshier, Destabilization of dark states and optical spectroscopy in Zeeman degenerate atomic systems, Phys. Rev. A 65(3), 033413 (2002)
https://doi.org/10.1103/PhysRevA.65.033413
52 E. S. Shuman, J. F. Barry, D. R. Glenn, and D. De-Mille, Radiative force from optical cycling on a diatomic molecule, Phys. Rev. Lett. 103(22), 223001 (2009)
https://doi.org/10.1103/PhysRevLett.103.223001
53 N. J. Fitch and M. R. Tarbutt, Laser cooled molecules, arXiv: 2103.00968 (2021)
https://doi.org/10.1016/bs.aamop.2021.04.003
54 B. Klöter, C. Weber, D. Haubrich, D. Meschede, and H. Metcalf, Laser cooling of an indium atomic beam enabled by magnetic fields, Phys. Rev. A 77(3), 033402 (2008)
https://doi.org/10.1103/PhysRevA.77.033402
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed