1. Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics & Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China 2. School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
By combining structural search and first-principles calculations, we predict a new stable two-dimensional PdSe monolayer, and systematically investigate its structural, electronic and optical properties. The calculated formation enthalpy, phonon spectra and molecular dynamic simulations confirm that PdSe monolayer possesses excellent thermodynamic and dynamic stability. PdSe monolayer is a semiconductor with an indirect band gap of ∼ 1.10 eV. The carrier transport of PdSe monolayer is dominated by hole and exhibits remarkable anisotropy due to the intrinsic structure anisotropy. The optical properties also show obvious anisotropic characteristic with considerable absorption coefficient and broad absorption from the visible to ultraviolet regions. Benefiting from these excellent physical properties, PdSe monolayer is expected to be a promising candidate as electronic and optoelectronic devices.
H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, From bulk to monolayer MoS2: Evolution of Raman scattering, Adv. Funct. Mater. 22(7), 1385 (2012) https://doi.org/10.1002/adfm.201102111
2
J. Sun, H. Shi, T. Siegrist, and D. J. Singh, Electronic, transport, and optical properties of bulk and mono-layer PdSe2, Appl. Phys. Lett. 107(15), 153902 (2015) https://doi.org/10.1063/1.4933302
3
X. X. Xue, S. Shen, X. Jiang, P. Sengdala, K. Chen, and Y. Feng, Tuning the catalytic property of phosphorene for oxygen evolution and reduction reactions by changing oxidation degree, J. Phys. Chem. Lett. 10(12), 3440 (2019) https://doi.org/10.1021/acs.jpclett.9b00891
4
X. X. Xue, L. M. Tang, K. Chen, L. Zhang, E. G. Wang, and Y. Feng, Bifunctional mechanism of N, P co-doped graphene for catalyzing oxygen reduction and evolution reactions, J. Phys. Phys. 150(10), 104701 (2019) https://doi.org/10.1063/1.5082996
5
M. Qiao, J. Liu, Y. Wang, Y. Li, and Z. Chen, PdSeO3 monolayer: Promising inorganic 2D photocatalyst for direct overall water splitting without using sacrificial reagents and cocatalysts, J. Am. Chem. Soc. 140(38), 12256 (2018) https://doi.org/10.1021/jacs.8b07855
6
K. S. Novoselov, V. I. Fal ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, A roadmap for graphene, Nature 490(7419), 192 (2012) https://doi.org/10.1038/nature11458
7
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004) https://doi.org/10.1126/science.1102896
8
K. S. Novoselov, D. V. Andreeva, W. C. Ren, and G. C. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019) https://doi.org/10.1007/s11467-018-0835-6
9
X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold, A. H. MacDonald, and D. K. Efetov, Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene, Nature 574(7780), 653 (2019) https://doi.org/10.1038/s41586-019-1695-0
10
M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Tuning superconductivity in twisted bilayer graphene, Science 363(6431), 1059 (2019) https://doi.org/10.1126/science.aav1910
11
Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional super-conductivity in magic-angle graphene superlattices, Nature 556(7699), 43 (2018) https://doi.org/10.1038/nature26160
12
Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature 556(7699), 80 (2018) https://doi.org/10.1038/nature26154
13
C. Zhi, Y. Bando, C. Tang, H. Kuwahara, and D. Golberg, Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties, Adv. Mater. 21(28), 2889 (2009) https://doi.org/10.1002/adma.200900323
14
J. H. Warner, M. H. Rummeli, A. Bachmatiuk, and B. Buchner, Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation, ACS Nano 4(3), 1299 (2010) https://doi.org/10.1021/nn901648q
15
R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions, Adv. Mater. 23(34), 3944 (2011) https://doi.org/10.1002/adma.201102584
Y. Liu, Y. Zhou, H. Zhang, F. Ran, W. Zhao, L. Wang, C. Pei, J. Zhang, X. Huang, and H. Li, Probing interlayer interactions in WSe2-graphene heterostructures by ultralowfrequency Raman spectroscopy, Front. Phys. 14(1), 13607 (2019) https://doi.org/10.1007/s11467-018-0854-3
18
X. X. Xue, Y. Feng, K. Chen, and L. Zhang, The vertical growth of MoS2 layers at the initial stage of CVD from first-principles, J. Phys. Phys. 148(13), 134704 (2018) https://doi.org/10.1063/1.5010996
19
J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, Highmobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun. 5(1), 4475 (2014) https://doi.org/10.1038/ncomms5475
20
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014) https://doi.org/10.1021/nn501226z
21
L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014) https://doi.org/10.1038/nnano.2014.35
22
L. P. Tang, L. M. Tang, H. Geng, Y. P. Yi, Z. Wei, K. Q. Chen, and H. X. Deng, Tuning transport performance in two-dimensional metal-organic framework semiconductors: Role of the metal d band, Appl. Phys. Lett. 112(1), 012101 (2018) https://doi.org/10.1063/1.5000448
L. Sun, M. G. Campbell, and M. Dinca, Electrically conductive porous metal-organic frameworks, Angew. Chem. Int. Ed. 55(11), 3566 (2016) https://doi.org/10.1002/anie.201506219
25
A. J. Mannix, X. F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam, and N. P. Guisinger, Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs, Science 350(6267), 1513 (2015) https://doi.org/10.1126/science.aad1080
26
Z. Zhang, Y. Yang, E. S. Penev, and B. I. Yakobson, Elasticity, flexibility, and ideal strength of borophenes, Adv. Funct. Mater. 27(9), 1605059 (2017) https://doi.org/10.1002/adfm.201605059
27
B. K. Agrawal, P. S. Yadav, S. Kumar, and S. Agrawal, First-principles calculation of Ga-based semiconductors, Phys. Rev. B 52(7), 4896 (1995) https://doi.org/10.1103/PhysRevB.52.4896
28
S. Massidda, A. Continenza, A. J. Freeman, T. M. de Pascale, F. Meloni, and M. Serra, Structural and electronic properties of narrow-band-gap semiconductors: InP, InAs, and InSb, Phys. Rev. B 41(17), 12079 (1990) https://doi.org/10.1103/PhysRevB.41.12079
29
G. D. Nguyen, L. Liang, Q. Zou, M. Fu, A. D. Oyedele, B. G. Sumpter, Z. Liu, Z. Gai, K. Xiao, and A. P. Li, 3D imaging and manipulation of subsurface selenium vacancies in PdSe2, Phys. Rev. Lett. 121(8), 086101 (2018) https://doi.org/10.1103/PhysRevLett.121.086101
30
J. Lin, S. Zuluaga, P. Yu, Z. Liu, S. T. Pantelides, and K. Suenaga, Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2, Phys. Rev. Lett. 119(1), 016101 (2017) https://doi.org/10.1017/S1431927617009163
31
X. Zhu, F. Li, Y. Wang, M. Qiao, and Y. Li, Pd2Se3 monolayer: A novel two-dimensional material with excellent electronic, transport, and optical properties, J. Mater. Chem. C 6(16), 4494 (2018) https://doi.org/10.1039/C8TC00810H
32
Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82(9), 094116 (2010) https://doi.org/10.1103/PhysRevB.82.094116
33
Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, J. Mater. Chem. C 183(10), 2063 (2012) https://doi.org/10.1016/j.cpc.2012.05.008
34
Y. Wang, M. Miao, J. Lv, L. Zhu, K. Yin, H. Liu, and Y. Ma, An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm, J. Phys. Phys. 137(22), 224108 (2012) https://doi.org/10.1063/1.4769731
35
J. Lv, Y. Wang, L. Zhu, and Y. Ma, Particle-swarm structure prediction on clusters, J. Phys. Phys. 137(8), 084104 (2012) https://doi.org/10.1063/1.4746757
36
X. Jiang, Y. Zheng, X. X. Xue, J. Dai, and Y. Feng, Ab initio study of the miscibility for solid hydrogen-helium mixtures at high pressure, J. Phys. Phys. 152(7), 074701 (2020) https://doi.org/10.1063/1.5138253
37
K. Hu, J. Lian, L. Zhu, Q. Chen, and S. Y. Xie, Prediction of Fe2P-type TiTe2 under pressure, Phys. Rev. B 101(13), 134109 (2020)
38
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996) https://doi.org/10.1103/PhysRevB.54.11169
G. Kresse, J. Furthmuller, and J. Hafner, Theory of the crystal structures of selenium and tellurium: The effect of generalized-gradient corrections to the local-density approximation, Phys. Rev. B 50(18), 13181 (1994) https://doi.org/10.1103/PhysRevB.50.13181
Y. Zheng, X. Jiang, X. Xue, J. Dai, and Y. Feng, Ab initio study of pressure-driven phase transition in FePS3 and FePSe2, Phys. Rev. B 100(17), 174102 (2019) https://doi.org/10.1103/PhysRevB.100.174102
43
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmente d-wave method, Phys. Rev. B 59(3), 1758 (1999) https://doi.org/10.1103/PhysRevB.59.1758
A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008) https://doi.org/10.1103/PhysRevB.78.134106
47
G. J. Martyna, M. L. Klein, and M. Tuckerman, Nosé–Hoover chains: The canonical ensemble via continuous dynamics, J. Phys. Phys. 97(4), 2635 (1992) https://doi.org/10.1063/1.463940
48
Y. Feng, F. Li, Z. Hu, X. Luo, L. Zhang, X. F. Zhou, H. T. Wang, J. J. Xu, and E. G. Wang, Tuning the catalytic property of nitrogen-doped graphene for cathode oxygen reduction reaction, Phys. Rev. B 85(15), 155454 (2012) https://doi.org/10.1103/PhysRevB.85.155454
49
W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, Intrinsic structural defects in monolayer molybdenum disulfide, Nano Lett. 13(6), 2615 (2013) https://doi.org/10.1021/nl4007479
50
Y. Feng, K. Chen, X. Z. Li, E. Wang, and L. Zhang, Hydrogen induced contrasting modes of initial nucleations of graphene on transition metal surfaces, J. Phys. Phys. 146(3), 034704 (2017) https://doi.org/10.1063/1.4974178
51
J. Tan, K. Chen, and L. M. Tang, Out-of-plane spontaneous polarization and superior photoelectricity in two-dimensional SiSn, J. Phys.: Condens. Matter 32(6), 065003 (2020) https://doi.org/10.1088/1361-648X/ab4ff7
52
J. Bardeen and W. Shockley, Deformation potentials and mobilities in non-polar crystals, Phys. Rev. 80(1), 72 (1950) https://doi.org/10.1103/PhysRev.80.72
53
A. Franceschetti, S. H. Wei, and A. Zunger, Effects of ordering on the electron effective mass and strain deformation potential in GaInP2: Deficiencies of the k.p model, Phys. Rev. B 52(19), 13992 (1995) https://doi.org/10.1103/PhysRevB.52.13992
54
S. Saha, T. P. Sinha, and A. Mookerjee, Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3, Phys. Rev. B 62(13), 8828 (2000) https://doi.org/10.1103/PhysRevB.62.8828
55
N. Miao, B. Xu, N. C. Bristowe, J. Zhou, and Z. Sun, Tunable magnetism and extraordinary sunlight absorbance in indium triphosphide monolayer, J. Am. Chem. Soc. 139(32), 11125 (2017) https://doi.org/10.1021/jacs.7b05133
56
Y. F. Ding, Q. Q. Zhao, Z. L. Yu, Y. Q. Zhao, B. Liu, P. B. He, H. Zhou, K. Li, S. F. Yin, and M. Q. Cai, Strong thickness-dependent quantum confinement in all-inorganic perovskite Cs2PbI4 with a Ruddlesden–Popper structure, J. Mater. Chem. C 7(24), 7433 (2019) https://doi.org/10.1039/C9TC02267H
57
A. D. Becke, Perspective: Fifty years of density-functional theory in chemical physics, J. Phys. Phys. 140(18), 18A301 (2014) https://doi.org/10.1063/1.4869598
58
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010) https://doi.org/10.1103/PhysRevLett.105.136805
59
S. Lebègue and O. Eriksson, Electronic structure of two-dimensional crystals from ab initio theory, Phys. Rev. B 79(11), 115409 (2009) https://doi.org/10.1103/PhysRevB.79.115409
60
C. Ataca and S. Ciraci, Functionalization of single-layer MoS2 honeycomb structures, J. Mater. Chem. C 115(27), 13303 (2011) https://doi.org/10.1021/jp2000442
61
A. D. Oyedele, S. Yang, L. Liang, A. A. Puretzky, K. Wang, J. Zhang, P. Yu, P. R. Pudasaini, A. W. Ghosh, Z. Liu, C. M. Rouleau, B. G. Sumpter, M. F. Chisholm, W. Zhou, P. D. Rack, D. B. Geohegan, and K. Xiao, PdSe2: Pentagonal two-dimensional layers with high air stability for electronics, J. Am. Chem. Soc. 139(40), 14090 (2017) https://doi.org/10.1021/jacs.7b04865
62
B. Chakraborty, H. S. S. R. Matte, A. K. Sood, and C. N. R. Rao, Layer-dependent resonant Raman scattering of a few layer MoS2, J. Raman Spectrosc. 44(1), 92 (2013) https://doi.org/10.1002/jrs.4147
63
W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and Osgood, Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy, Phys. Rev. Lett. 111(10), 106801 (2013) https://doi.org/10.1103/PhysRevLett.111.106801