Broadband, self-power, and polarization-sensitivity are desirable qualities for a photodetector. However, currently few photodetectors can fulfill these requirements simultaneously. Here, we propose a Ti3C2Tx (MXene) photodetector that is driven by the photogalvanic effect with impressive performances. A polarization-sensitive photocurrent is generated at zero bias under the illumination of linearly polarized laser light of 1064 nm, with an extinction ratio of 1.11. Meanwhile, a fast response with a 32/28 ms rise/decay time and a large on/off switching ratio of 120 are achieved. Besides, a robust zero-bias photocurrent is also generated in the photodetector under the illumination of 940 and 620 nm light, as well as the white light, showing a broadband photoresponse from the near-infrared to visible. Moreover, quantum transport simulations indicate that the photogalvanic effect plays an important role in the generation of the polarized photocurrent at zero bias due to the broken space inversion symmetry of the stacked few-layer Ti3C2Tx. Our results shed light on a potential application of the Ti3C2Tx–MXene in the low-power photodetection with high performances.
F. I. Alzakia , B. S. Tang , S. J. Pennycook , and S. C. Tan , Engineering the photoresponse of liquid-exfoliated 2D materials by size selection and controlled mixing for an ultrasensitive and ultraresponsive photodetector, Mater. Horiz. 7 (12), 3325 (2020) https://doi.org/10.1039/D0%20MH01493A
2
M. D. Stoller , S. J. Park , Y. W. Zhu , J. H. An , and R. S. Ruoff , Graphene-based ultracapacitors, Nano Lett. 8 (10), 3498 (2008) https://doi.org/10.1021/nl802558y
3
Q. H. Wang , K. Kalantar-Zadeh , A. Kis , J. N. Coleman , and M. S. Strano , Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol. 7 (11), 699 (2012) https://doi.org/10.1038/nnano.2012.193
4
M. Chhowalla , H. S. Shin , G. Eda , L. J. Li , K. P. Loh , and H. Zhang , The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5 (4), 263 (2013) https://doi.org/10.1038/nchem.1589
5
L. Song , L. J. Ci , H. Lu , P. B. Sorokin , C. H. Jin , J. Ni , A. G. Kvashnin , D. G. Kvashnin , J. Lou , B. I. Yakobson , and P. M. Ajayan , Large scale growth and characterization of atomic hexagonal boron nitride layers, Nano Lett. 10 (8), 3209 (2010) https://doi.org/10.1021/nl1022139
6
A. A. Hussain , Constructing caesium-based lead-free perovskite photodetector enabling self-powered operation with extended spectral response, ACS Appl. Mater. Interfaces 12 (41), 46317 (2020) https://doi.org/10.1021/acsami.0c14083
7
S. Qiao , Y. Liu , J. H. Liu , G. S. Fu , and S. F. Wang , High-responsivity, fast, and self-powered narrowband perovskite heterojunction photodetectors with a tunable response range in the visible and near-infrared region, ACS Appl. Mater. Interfaces 13 (29), 34625 (2021) https://doi.org/10.1021/acsami.1c09642
8
H. Kan , W. Zheng , R. C. Lin , M. Li , C. Fu , H. B. Sun , M. Dong , C. H. Xu , J. T. Luo , Y. Q. Fu , and F. Huang , Ultrafast photovoltaic-type deep ultraviolet photodetectors using hybrid zero-/two-dimensional heterojunctions, ACS Appl. Mater. Interfaces 11 (8), 8412 (2019) https://doi.org/10.1021/acsami.8b20357
9
X. T. Zhang , X. M. Yao , Z. Y. Li , C. Zhou , X. M. Yuan , Z. Tang , W. D. Hu , X. T. Gan , J. Zou , P. P. Chen , and W. Lu , Surface-states-modulated high-performance InAs nanowire phototransistor, J. Phys. Chem. Lett. 11 (15), 6413 (2020) https://doi.org/10.1021/acs.jpclett.0c01879
10
X. T. Zhang , H. Huang , X. M. Yao , Z. Y. Lo , C. Zhou , X. Zhang , P. P. Chen , L. Fu , X. H. Zhou , J. L. Wang , W. D. Hu , W. Lu , J. Zou , H. H. Tan , and C. Jagadish , Ultrasensitive mid-wavelength infrared photodetection based on a single In As nanowire, ACS Nano 13 (3), 3492 (2019) https://doi.org/10.1021/acsnano.8b09649
11
C. Guo , Y. B. Hu , G. Chen , D. C. Wei , L. B. Zhang , Z. Q. Z. Chen , W. L. Guo , H. Xu , C. N. Kuo , C. S. Lue , X. Y. Bo , X. G. Wan , L. Wang , A. Politano , X. S. Chen , and W. Lu , Anisotropic ultrasensitive PdTe2-based phototransistor for room-temperature long-wavelength detection, Sci. Adv. 6 (36), eabb6500 (2020) https://doi.org/10.1126/sciadv.abb6500
12
L. Tong , X. Y. Huang , P. Wang , L. Ye , M. Peng , L. C. An , Q. D. Sun , Y. Zhang , G. M. Yang , Z. Li , F. Zhong , F. Wang , Y. X. Wang , M. Motlag , W. Z. Wu , G. J. Cheng , and W. D. Hu , Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature, Nat. Commun. 11 (1), 2308 (2020) https://doi.org/10.1038/s41467-020-16125-8
13
S. Feng , C. Liu , Q. B. Zhu , X. Su , W. W. Qian , Y. Sun , C. X. Wang , B. Li , M. L. Chen , L. Chen , W. Chen , L. L. Zhang , C. Zhen , F. J. Wang , W. C. Ren , L. C. Yin , X. M. Wang , H. M. Cheng , and D. M. Sun , An ultrasensitive molybdenum-based double-heterojunction phototransistor, Nat. Commun. 12 (1), 4094 (2021) https://doi.org/10.1038/s41467-021-24397-x
14
Y. S. Yang , S. C. Liu , W. Yang , Z. B. Li , Y. Wang , X. Wang , S. S. Zhang , Y. Zhang , M. S. Long , G. M. Zhang , D. J. Xue , J. S. Hu , and L. J. Wan , Air-stable inplane anisotropic GeSe2 for highly polarization-sensitive photodetection in short wave region, J. Am. Chem. Soc. 140 (11), 4150 (2018) https://doi.org/10.1021/jacs.8b01234
15
J. Bullock , M. Amani , J. Cho , Y. Z. Chen , G. H. Ahn , V. Adinolfi , V. R. Shrestha , Y. Gao , K. B. Crozier , Y. L. Chueh , and A. Javey , Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature, Nat. Photonics 12 (10), 601 (2018) https://doi.org/10.1038/s41566-018-0239-8
16
Y. Xin , X. X. Wang , Z. Chen , D. Weller , Y. Y. Wang , L. J. Shi , X. Ma , C. J. Ding , W. Li , S. Guo , and R. B. Liu , Polarization-sensitive self-powered type-II GeSe/MoS2 Van Der Waals heterojunction photodetector, ACS Appl. Mater. Interfaces 12 (13), 15406 (2020) https://doi.org/10.1021/acsami.0c01405
17
C. M. Ji , D. Dey , Y. Peng , X. T. Liu , L. N. Li , and J. H. Luo , Ferroelectricity-driven self-powered ultraviolet photodetection with strong polarization sensitivity in a twodimensional halide hybrid perovskite, Angew. Chem. Int. Ed. 59 (43), 18933 (2020) https://doi.org/10.1002/anie.202005092
18
Y. Peng , X. T. Liu , Z. H. Sun , C. M. Ji , L. N. Li , Z. Y. Wu , S. S. Wang , Y. P. Yao , M. C. Hong , and J. H. Luo , Exploiting the bulk photovoltaic effect in a 2D trilayered hybrid ferroelectric for highly sensitive polarized light detection, Angew. Chem. Int. Ed. 59 (10), 3933 (2020) https://doi.org/10.1002/anie.201915094
19
D. Wu , J. W. Guo , J. Du , C. X. Xia , L. H. Zeng , Y. Z. Tian , Z. F. Shi , Y. T. Tian , X. J. Li , Y. H. Tsang , and J. S. Jie , Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction, ACS Nano 13 (9), 9907 (2019) https://doi.org/10.1021/acsnano.9b03994
20
Y. Q. Xie , L. Zhang , Y. Zhu , L. Liu , and H. Guo , Photogalvanic effect in monolayer black phosphorus, Nanotechnology 26 (45), 455202 (2015) https://doi.org/10.1088/0957-4484/26/45/455202
21
F. H. Chu , M. Y. Chen , Y. Wang , Y. Q. Xie , B. Y. Liu , Y. H. Yang , X. T. An , and Y. Z. Zhang , A highly polarization sensitive antimonene photodetector with a broadband photoresponse and strong anisotropy, J. Mater. Chem. C 6 (10), 2509 (2018) https://doi.org/10.1039/C7%20TC05488B
22
Y. S. Yang , S. C. Liu , X. Wang , Z. B. Li , Y. Zhang , G. M. Zhang , D. J. Xue , and J. S. Hu , Polarization-sensitive ultraviolet photodetection of anisotropic 2D GeS2, Adv. Funct. Mater. 29 (16), 1900411 (2019) https://doi.org/10.1002/adfm.201900411
23
Y. Z. Luo , Y. B. Hu , and Y. Q. Xie , Highly polarizationsensitive, visible-blind and self-powered ultraviolet photodetection based on two-dimensional wide bandgap semiconductors: A theoretical prediction, J. Mater. Chem. A 7 (48), 27503 (2019) https://doi.org/10.1039/C9%20TA10473A
24
L. Y. Qian , J. Zhao , and Y. Q. Xie , Enhanced photogalvanic effect in the two-dimensional MgCl2/ZnBr2 vertical heterojunction by inhomogenous tensile stress, Front. Phys. 17 (1), 13502 (2022) https://doi.org/10.1007/s11467-021-1093-6
S. M. Young , F. Zheng , and A. M. Rappe , First-principles calculation of the bulk photovoltaic effect in bismuth ferrite, Phys. Rev. Lett. 109 (23), 236601 (2012) https://doi.org/10.1103/PhysRevLett.109.236601
27
U. Bajpai , B. S. Popescu , P. Plechac , B. K. Nikolić , L. Torres , H. Ishizuka , and N. Nagaosa , Spatio-temporal dynamics of shift current quantum pumping by femtosecond light pulse, J. Phys. Mater. 2 (2), 025004 (2019) https://doi.org/10.1088/2515-7639/ab0a3e
28
S. Hubmann , G. V. Budkin , M. Otteneder , D. But , D. Sacre , I. Yahniuk , K. Diendorfer , V. V. Bel’kov , D. A. Kozlov , N. N. Mikhailov , S. A. Dvoretsky , V. S. Varavin , V. G. Remesnik , S. A. Tarasenko , W. Knap , and S. D. Ganichev , Symmetry breaking and circular photogalvanic effect in epitaxial CdxHg1-xTe films, Phys. Rev. Mater. 4 (4), 043607 (2020) https://doi.org/10.1103/PhysRevMaterials.4.043607
29
Y. Z. Luo , Y. Q. Xie , J. Zhao , Y. B. Hu , X. Ye , and S. H. Ke , Perfect in-plane CrI3 spin-valve driven by photogalvanic effect, Phys. Rev. Mater. 5 (5), 054004 (2021) https://doi.org/10.1103/PhysRevMaterials.5.054004
30
L. F. Gao , W. L. Bao , A. V. Kuklin , S. Mei , H. Zhang , and H. Agren , Hetero–MXenes: Theory, synthesis, and emerging applications, Adv. Mater. 33 (10), 2004129 (2021) https://doi.org/10.1002/adma.202004129
31
S. Y. Pang , Y. T. Wong , S. G. Yuan , Y. Liu , M. K. Tsang , Z. B. Yang , H. T. Huang , W. T. Wong , and J. H. Hao , Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials, J. Am. Chem. Soc. 141 (24), 9610 (2019) https://doi.org/10.1021/jacs.9b02578
32
K. J. Griffith , M. A. Hope , P. J. Reeves , M. Anayee , Y. Gogotsi , and C. P. Grey , Bulk and surface chemistry of the niobium MAX and MXene phases from multinuclear solid-state NMR spectroscopy, J. Am. Chem. Soc. 142 (44), 18924 (2020) https://doi.org/10.1021/jacs.0c09044
33
J. Y. Sui , X. F. Chen , Y. Li , W. C. Peng , F. B. Zhang , and X. B. Fan , MXene derivatives: Synthesis and applications in energy convention and storage, RSC Adv. 11 (26), 16065 (2021) https://doi.org/10.1039/D0%20RA10018H
34
J. X. Chen , Z. L. Li , F. L. Ni , W. X. Ouyang , and X. S. Fang , Bio-inspired transparent MXene electrodes for flexible UV photodetectors, Mater. Horiz. 7 (7), 1828 (2020) https://doi.org/10.1039/D0%20MH00394H
35
S. Chertopalov and V. N. Mochalin , Environment-sensitive photoresponse of spontaneously partially oxidized Ti3C2 MXene thin films, ACS Nano 12 (6), 6109 (2018) https://doi.org/10.1021/acsnano.8b02379
36
A. B. Ren , J. H. Zou , H. G. Lai , Y. X. Huang , L. M. Yuan , H. Xu , K. Shen , H. Wang , S. Y. Wei , Y. F. Wang , X. Hao , J. Q. Zhang , D. W. Zhao , J. Wu , and Z. M. Wang , Direct laser-patterned MXene-perovskite image sensor arrays for visible-near infrared photodetection, Mater. Horiz. 7 (7), 1901 (2020) https://doi.org/10.1039/D0%20MH00537A
37
S. L. Zhang and W. Q. Han , Recent advances in MXenes and their composites in lithium/sodium batteries from the viewpoints of components and interlayer engineering, Phys. Chem. Chem. Phys. 22 (29), 16482 (2020) https://doi.org/10.1039/D0%20CP02275F
38
H. T. Chen , A. D. Handoko , T. S. Wang , J. L. Qu , J. W. Xiao , X. P. Liu , D. Legut , Z. W. Seh , and Q. F. Zhang , Defect-enhanced CO2 reduction catalytic performance in O-terminated MXenes, Chemsuschem 13 (21), 5690 (2020) https://doi.org/10.1002/cssc.202001624
39
J. C. Lei , X. Zhang , and Z. Zhou , Recent advances in MXene: Preparation, properties, and applications, Front. Phys. 10 (3), 276 (2015) https://doi.org/10.1007/s11467-015-0493-x
40
J. T. Zhu , H. Wang , L. Ma , and G. F. Zou , Observation of ambipolar photoresponse from 2D MoS2/MXene heterostructure, Nano Res. 14, 3416 (2021) https://doi.org/10.1007/s12274-021-3518-5
41
W. X. Huo , Z. A. Zhang , Z. L. Wang , Z. Y. Wu , J. M. Li , Y. Chai , and X. Huang , Large-area transient conductive films obtained through photonic sintering of 2D materials, Adv. Mater. Technol. 7 (2), 2100439 (2021) https://doi.org/10.1002/admt.202100439
42
X. H. Zha , K. Luo , Q. W. Li , Q. Huang , J. He , X. D. Wen , and S. Y. Du , Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes, Europhys. Lett. 111 (2), 26007 (2015) https://doi.org/10.1209/0295-5075/111/26007
43
G. R. Berdiyorov , Effect of surface functionalization on the electronic transport properties of Ti3C2 MXene, Europhys. Lett. 111 (6), 67002 (2015) https://doi.org/10.1209/0295-5075/111/67002
44
O. Mashtalir , M. Naguib , V. N. Mochalin , Y. Dall’Agnese , M. Heon , M. W. Barsoum , and Y. Gogotsi , Intercalation and delamination of layered carbides and carbonitrides, Nat. Commun. 4 (1), 1716 (2013) https://doi.org/10.1038/ncomms2664
45
K. Maleski , V. N. Mochalin , and Y. Gogotsi , Dispersions of two-dimensional titanium carbide MXene in organic solvents, Chem. Mater. 29 (4), 1632 (2017) https://doi.org/10.1021/acs.chemmater.6b04830
46
Q. Zou , W. Y. Guo , L. Zhang , L. T. Yang , Z. Y. Zhao , F. Liu , X. Ye , Y. Zhang , and W. Z. Shi , MXene-based ultrathin film for terahertz radiation shielding, Nanotechnology 31 (50), 505710 (2020) https://doi.org/10.1088/1361-6528/abb6a7
47
Q. Kong , X. An , L. Huang , X. Wang , W. Feng , S. Qiu , Q. Wang , and C. Sun , A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure a hydrogen evolution performance, Front. Phys. 16 (5), 1 (2021)
48
J. Taylor , H. Guo , and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63 (24), 245407 (2001) https://doi.org/10.1103/PhysRevB.63.245407
49
C. Guo , Y. Hu , G. Chen , D. Wei , L. Zhang , Z. Chen , W. Guo , H. Xu , C. N. Kuo , C. S. Lue , X. Bo , X. Wan , L. Wang , A. Politano , X. Chen , and W. Lu , Anisotropic ultrasensitive PdTe2-based phototransistor for room-temperature long-wavelength detection, Sci. Adv. 6 (36), 6500 (2020) https://doi.org/10.1126/sciadv.abb6500